Как предотвратить техногенные катастрофы в вашей местности. Меры предотвращения техногенных аварий


Тема: Техногенная катастрофа. Можно ли избежать?

Выполнил:

Ученик 6 В класса

МБОУ лицей Технический

Новиков Александр

Самара 2015

Введение

  1. Жизнь до 5
  2. Что такое техногенная катастрофа? 5
  3. Последствия. 6
  4. Меры предостороженности. 8
  5. Заключение. 9
  6. Список литературы. 11

Введение

Когда мы слышим фразу – Техногенная катастрофа, то невольно содрогаемся и представляется что-то страшное и это действительно так. Исследование данной темы волнует нас с точки зрения обеспечения безопасности всего человечества.

На этапе возникновения человечества людям угрожали опасности природных явлений, но впоследствии творцом опасностей стал сам человек, который искал способы защиты от этих опасностей.

Вмешательство человека в природу резко увеличилось, расширился его объем, стали разрабатываться новшества и они стали более разнообразными

Но обратная сторона этого то, что грозит стать глобальной опасностью для всех людей на планете.

Происхождение опасностей может быть различным – природные, техногенные, антропогенные, биологические, экологические, социальные Количество чрезвычайных ситуаций за последние 30 лет возросло, соответственно растет число жертв и материальный ущерб.

Мы будем говорить о техногенных катастрофах, потому что их создает сам человек, и он же может их не допустить.

Постановка проблемы.

Сегодня технологические катастрофы – это одна из глобальных проблем человечества. С каждым днём они становятся более глобальными и мощными наряду с развитием науки и техники. Последствия этих катастроф, в большинстве случаев, необратимы. В погоне за комфортом и богатством люди не обращают внимания на последствия этой гонки и сами же страдают из-за этого. Избежать этих катастроф не удастся, но возможно уменьшение их количества, за счёт более разумного и рационального подхода человека к своей деятельности.

Актуальность данного исследования обусловлена тем, что в современных условиях во всех видах деятельности человека, несущих угрозу окружающей среде, необходимо уделять большое внимание ошибкам прошлых лет и в будущем стараться избегать аналогичных действий, которые уже стали частью горького опыта человечества.

Цель моего исследования узнать причину техногенных катастроф, последствия и влияния на нашу жизнь. И жизнь человечества в будущем.

Что это бы выяснить я поставил перед собой следующие задачи

  1. Найти информацию по самым крупным техногенным катастрофам.
  2. Объяснить их причины и последствия
  3. Рассмотреть на примере одной катастрофы (ЧАЭС)
  4. Составить небольшой прогноз на будущие годы и дать оценку прогнозирования техногенных катастроф.

Гипотеза: Во власти ли человека избежать такие ситуации и что для этого надо?

1.Жизнь до

Наша планета существует уже 4,5 млрд. лет. Весь этот огромный интервал времени на ее поверхности постоянно происходили сложные физико-химические процессы, возникла жизнь, формировалась атмосфера, развились сложно организованные животные и растения. Все эти изменения происходили очень медленно, растягиваясь на сотни миллионов лет. В настоящее время наука и техника достигли такого высокого уровня, что мы уже можем предугадывать многие природные катастрофы, а в скором времени, несомненно, научимся и предупреждать их. Однако тот же самый технический прогресс породил много, и в том числе такой новый термин как “техногенная катастрофа”.

2.Что такое техногенная катастрофа?

Прогресс человечества невозможен без новых технологий. В свою очередь, использование техники влечет за собой возможные ее сбои, просчеты в технологии ее производства и использования.

Техногенная катастрофа - крупная авария, влекущая за собой массовую гибель людей и даже экологическую катастрофу. Одной из особенностей техногенной катастрофы является её случайность (тем самым она отличается от терактов). Техногенные катастрофы могут вызвать панику, транспортный коллапс, а также привести к подъему или потере авторитета власти. Юридически классифицируют как чрезвычайную ситуацию

Техногенные катастрофы занимают одно из ведущих мест среди катастроф по количеству человеческих жертв. Если сравнивать техногенные и природные катастрофы, то природные человечество уже более-менее научилось прогнозировать, техногенные же нет. По количеству, техногенные катастрофы уже превышают природные.

Технический прогресс делает нашу жизнь комфортнее. Однако техногенные катастрофы не только уносят тысячи человеческих жизней, но и обходятся государствам и корпорациям в гигантские суммы.

3. Последствия

Рассмотрим самые крупные техногенные катастрофы на предприятиях ядерного комплекса

12 марта г. - авария на Фукусима-1 (Япония) . Сформирована 40 километровая зона отчуждения, с полным выселением людей. Выброс в атмосферу неизвестен. Но властями заявлено полное разрушение трёх энергоблоков.

Даже из краткого содержания мы видим огромную глобальную проблему.

Чтобы показать масштабы рассмотрим отдельно Чернобыльскую Атомную Электростанцию в Средствах массовой Информации чаще всего употребляется термин Чернобыльская катастрофа

26 апреля 1986 года в результате разрушения 4-го энергоблока Чернобыльской АСЭ произошел взрыв ядерного реактора и выброс радиоактивных веществ в атмосферу и воду. 336 тысяч человек были переселены с постоянных мест обитания. Количество погибших в результате аварии - впервые дни ядерного взрыва составляет 57 человек. Из 600 тысяч человек, участвовавших в разное время в ликвидации последствий аварии, 4 тысячи умерли от рака.

Общие расходы на устранение последствий, эвакуацию населения и компенсации пострадавшим оцениваются приблизительно в 200 миллиардов долларов.

А самое страшное, то, эта проблема еще надолго коснулась многих людей. Рождались дети с тяжелой формой заболевания, которые генетически несли заболевание в будущее.

После проведения многих проверок было выявлено то, что виной всему был человек. П ерсонал допустил ряд ошибок и нарушил существующие инструкции и программу испытаний, что повлекло за собой самую огромную в мире техногенную катастрофу ядерного характера.

В результате аварии из сельскохозяйственного оборота было выведено около 5 млн. га земель, вокруг АЭС создана 30-километровая зона отчуждения, уничтожены и захоронены (закопаны тяжёлой техникой) сотни мелких населённых пунктов.

Люди, проживающие в этих местностях, получили огромные дозы облучения, которые впоследствии сказались на их здоровье. Результатом этого были острые лучевые болезни, онкологические заболевания, и наследственные болезни.

4.Меры предосторожности

Поскольку техногенные катастрофы детерминированы человеческим фактором, то проводится работа по их профилактике : ведется тестирование техники на вопрос её износа, проверяется дисциплина и профессионализм обслуживающего персонала . Поскольку полностью предотвратить возможность техногенной катастрофы нельзя, то необходимо предусмотреть мероприятия по своевременному оповещению о её возможном начале, планы её локализации, эвакуации населения из пострадавшего района и организация помощи пострадавшим и выжившим в зоне бедствия

5.ЗАКЛЮЧЕНИЕ

Проведя эту работу, я сделал много выводов для себя.

По статистике, в 80% техногенных катастрофах признают человеческий фактор. Значит что-то нужно менять в сознании людей. Если донести до каждого человека как важно нести ответственность за технику, а значит ответственность и за жизни людей. Быть может, если люди будут заботиться о безопасности других людей, нежели о своей выгоде и прибыли, будут создавать более усовершенствованные и безопасные предприятия, то и количество техногенных катастроф уменьшится в разы.

Сейчас в России вводятся новые, большей частью экспериментальные, агрегаты оборудования. И все это огромный риск не только для людей, но и для природы, а значит и всех наших ресурсов. Россия богата природными ресурсами, не для кого это не секрет. Но если мы будем сейчас засорять почву, загрязнять воды и заражать радиационными и химическими отбросами воздух, наша планета вряд ли скажет нам спасибо.

На данный момент, в идеале, каждый человек, живущий рядом с каким-либо опасным в случае катаклизма или катастрофы предприятием или заводом, должен знать пути эвакуации и меры безопасности, а также действия, которые он будет совершать в случае непредвиденной ситуации. К сожалению, такое редко встречается. В реальности людей в таких случаях охватывает паника, начинается бездействие. Поэтому, я считаю, лучше не допускать такие случаи, не рисковать жизнями людей и не портить драгоценную природу на нашей планете.

Скептики могут сказать, что во вселенских масштабах наша Земля практически ничего не значит и, поэтому все катастрофы, которые происходят с ней никак не сказываются на общем ходе развития вселенной и нам, собственно не о чём беспокоится. Но нам жить тут, на Земле (ну, по крайней мере, ближайшие лет 200) и поэтому надо сделать всё возможное, чтобы не ускорять процессы развития Земли (тенденция которых – деградация планеты), а наоборот, прикладывать все силы, чтобы затормозить эти процессы, или, хотя бы, не вмешиваться в них

Ведь механизм «экологических» катастроф предельно прост. Природа вся живет в круговоротах, человек же действует прямолинейно. Живя иллюзиями, он мнит себя властителем природы, развивает максимальную скорость - и не вписывается в очередной поворот. В результате - катастрофа. Можно и так сказать: он ведет автомобиль цивилизации вопреки правилам дорожного движения, которые установила природа.

Прежде всего, из-за утраты контроля над технологиями, например, мир может исчезнуть в результате атомной войны, череды ядерных катастроф, появления неконтролируемых машин и механизмов, утраты контроля над искусственно произведенными ядовитыми химическими или биологическими субстанциями и пр. Каждая техногенная катастрофа по-своему уникальна.

Однако есть и общие причины, которые стоят за несчастьями этого рода. Исследователь. Ли Дэвис, автор справочника "Рукотворные Катастрофы, перечисляет их в таком порядке: Глупость, Небрежность и Корысть.

По мнению Дэвиса, так называемый "человеческий фактор" техногенных катастроф практически целиком сводится именно к этим обстоятельствам.

6. Список литературы

1. ХХ век. Хроника необъяснимого: От катастрофы к катастрофе. – М.: АСТ Олимп, 1998.

2. Алымов В.Т. и др. Анализ техногенного риска: Учеб. пособие. – М.: Круглый год, 2000.

3. Арманд А.Д., Рукотворные катастрофы - М.,1993г.

4. Безопасность и предупреждение чрезвычайных ситуаций. Механизмы регулирования и технические средства: Каталог–справочник / Институт риска и безопасности. – М., 1997.

5. Глобальные проблемы как источник чрезвычайных ситуаций: Междунар. конф., 22-23 апр. 1998 г. – М.: УРСС, 1998.

6. Козлитин А.М., Попов А.И. Методы технико-экономической оценки промышленной и экологической безопасности высокорисковых объектов техносферы - Саратов: СГТУ, 2000.

7. Маньяков В.Д. Безопасность общества и человека в современном мире: Учебное пособие. - СПб.: Политехника, 2005.

8. Микрюков Ю.В. Безопасность жизнедеятельности М., 2006.

Интернет:

9. Саяно-Шушенская катастрофа. http://www.atominfo.ru

10. Проблемы атомной энергетики. http://www.energospace.ru

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

отация

Жизнедеятельность человека направлена на преобразование природы и создание комфортной искусственной среды обитания. Развитие науки, техники и современных технологий вызывает непредвиденные последствия. Побочные результаты научно-технического прогресса создают серьезные угрозы жизни и здоровью, состоянию генетического фонда людей. Увеличилась вероятность возникновения чрезвычайных ситуаций техногенного характера.

Цель данной работы: узнать природу техногенных катастроф, назвать их причины, последствия и влияние на нашу жизнь.

В соответствии с поставленной целью определены задачи:

Дать понятие техногенным катастрофам и рассмотреть их классификацию;

Выявить причины техногенных катастроф;

Исследовать последствия;

И проанализировав результаты анкетирования среди обучающихся 1 и 3 курсов по знанию причин возникновения техногенным катастрофам, правил поведения и действий при ЧС, сделать выводы о роли предмета «Безопасность жизнедеятельности» в жизни людей.

Объектом исследования является совокупность техногенных катастроф, их влияние на жизнедеятельность людей и общество, роль предмета «Безопасность жизнедеятельности» в жизни человека, попавшего в чрезвычайную ситуацию, в том числе и техногенную катастрофу.

Выбор темы обусловлен моим личным желанием и заинтересованностью более подробно изучить с помощью компетентных источников данную тему, в связи с частыми обрушениями зданий, происходящих при техногенных ЧС, событиями, приносящих большие материальные потери, а иногда человеческие жертвы.

В работе рассмотрены проблемы обеспечения безопасности в современном мире:

На основе обзора литературы:

    дано понятие «техногенные катастрофы», определены виды техногенных катастроф и их причины;

    рассмотрен вопрос об обеспечении безопасности при техногенных катастрофах в Тюменской области.

На основе анализа проведенного анкетирования обучающихся Медколледжа рассмотрен вопрос о значении, роли уроков БЖ в жизни человека, в том числе действий, для предотвращения техногенных катастроф.

Для написания данной работы использовались самые разные источники, такие как научные статьи, популярные книги, современные энциклопедии и интернет. Были проанализированы книги таких авторов, как Абрамов В.В., Арустамов Э.А и другие.

Исследование данной темы волнует нас с точки зрения обеспечения безопасности.

Введение

На заре человечества людям угрожали опасности природных явлений, но впоследствии творцом опасностей стал сам человек, который искал способы защиты от этих опасностей. Опасное вмешательство человека в природу резко увеличилось, расширился объем этого вмешательства, оно стало более разнообразным и сейчас грозит стать глобальной опасностью для человечества. Происхождение опасностей может быть различным - природные, техногенные, антропогенные, биологические, экологические, социальные.

Остановимся на рассмотрении одной из них - техногенные катастрофы, потому что их создает сам человек, и он же может их не допустить. Технический прогресс существенно повышает риск трагедий. На всех континентах Земли эксплуатируются тысячи потенциально опасных объектов с такими объемами запасов радиоактивных, взрывчатых и отравляющих веществ, которые в случае чрезвычайных ситуаций (далее - ЧС) могут нанести невосполнимые потери окружающей среде или даже уничтожить на Земле Жизнь. Тем более, что количество ЧС за последние 20 лет выросло в 2 раза, а по числу погибших ЧС находятся на третьем месте среди всех видов стихийных бедствий. Так в августе 2009 г. на крупнейшей гидроэлектростанции России - Саяно-Шушенской ГЭС из-за целого ряда причин технического характера и человеческого фактора произошла индустриальная техногенная катастрофа, в результате которой погибли 75 (76 — одна женщина была беременна) человек, пострадали 13 человек, оборудованию и помещениям станции был нанесен серьезный ущерб. В 2011 г. ЧС привели к гибели 751 человека, еще 1134 человек получили травмы. В 2015 году по статистическим данным произошло 155 техногенных катастроф, в которых более 7000 человек погибло или пропало без вести, и это в два раза превышает количество жертв в 2014 году.

Кроме этого, техногенные катастрофы имеют начало, но не имеют окончания, они совершенно непредсказуемы, а степень ущерба после них не уменьшается с годами, поскольку негативные факторы продолжают действовать в среде еще многие годы. Все чаще аварии принимают катастрофический характер с уничтожением объектов и тяжелыми экологическими последствиями (например - Чернобыль).

Виды техногенных катастроф, их причины и последствия

Техногенная катастрофа — крупная авария, следствие умышленных или неумышленных действий человека (в большинстве случаев), влекущая за собой гибель людей и даже экологическую катастрофу. Одной из особенностей техногенной катастрофы является её случайность.

Характер техногенной катастрофы зависит от причин, ее вызвавшей; ее масштабов; особенности предприятия, на котором она возникла.

Объекты могут сами являться потенциальными источниками техногенной катастрофы, а также могут оказаться в зоне действия поражающих факторов техногенной катастрофы, возникшей по независящей от них причинам.

Специалисты разделяют техногенные катастрофы на 10 типов по характеру объекта и природы происхождения:

    транспортные аварии и катастрофы;

    пожары, взрывы, угрозы взрывов;

    аварии с выбросом (угрозой выброса) химически опасных веществ;

    аварии с выбросом (угрозой выброса) радиоактивных веществ;

    аварии с выбросом (угрозой выброса) биологически опасных веществ;

    внезапное обрушение зданий, сооружений;

    аварии в электроэнергетических системах;

    аварии в коммунальных системах жизнеобеспечения;

    аварии на очистных сооружениях;

    гидродинамические аварии (прорывы плотин, дамб, шлюзов, перемычек).

Возникновение любой техногенной катастрофы вызывается сочетанием действий объективных и субъективных факторов, создающих причинный ряд событий. Непосредственными причинами техногенных катастроф могут быть:

Внешние по отношению к инженерной системе воздействия (стихийные бедствия, военно-диверсионные акции и т.д.), условия и обстоятельства, связанные непосредственно с данной системой:

    просчеты при проектировании и недостаточный уровень безопасности современных зданий;

    некачественное строительство или отступление от проекта;

    непродуманное размещение производства;

    технические неисправности, отсутствие на должном уровне содержания зданий и сооружений, оборудования, не приобретаются новые станки и механизмы, взамен устаревших, отказы технических систем из-за дефектов изготовления и нарушений режимов эксплуатации;

Человеческий фактор:

    нарушение требований технологического процесса из-за недостаточной подготовки или недисциплинированности и халатности персонала;

    невнимательность,

    грубейшие нарушения правил эксплуатации техники, транспорта, приборов и оборудования.

Последним, согласно статистике и мнению специалистов, принадлежит главная роль в возникновении техногенных катастроф. По оценке экспертов, человеческие ошибки обусловливают 45% экстремальных ситуаций на АЭС, 60% авиакатастроф и 80% катастроф на море.

К сожалению, количество аварий во всех сферах производственной деятельности неуклонно растет. Абсолютной безаварийности не существует. Это происходит в связи с широким использованием новых технологий и материалов, нетрадиционных источников энергии, массовым применением опасных веществ в промышленности и сельском хозяйстве.

Последствиями производственных аварий и техногенных катастроф могут быть:

    большие разрушения промышленных объектов (производственных зданий, сооружений, коммунальных и инженерных сетей), городов (общественных и жилых зданий, коммуникаций), транспортных средств и т.д.;

    заражение окружающей среды радиоактивными веществами, АХОВ, бактериологическими средствами;

    уничтожение материальных ценностей.

Значение безопасности в чрезвычайных ситуациях

для населения и территорий Тюменской области

Тюменская область, являясь одним из важнейших в экономическом плане регионов России, требует особого внимания и подходов в вопросах защиты ее населения, территорий и экономического потенциала от ЧС. Опасность техносферы для населения области и окружающей среды обуславливается наличием в промышленности, энергетике и коммунальном хозяйстве большого количества пожаро-, химически-, взрывоопасных производств и технологий; ростом производительности и интенсификации производств; концентрацией отдельных предприятий в промышленные комплексы и размещением их в непосредственной близости от мест проживания.

На территории области расположено около 300 промышленных производственных объектов, 137 электроподстанций, 311 автозаправочных комплексов. Функционируют предприятия, располагающие значительными объемами запасов высокотоксичных и токсичных веществ. Это предприятия нефтепереработки, объекты, использующие аммиак и хлор, хранилища нефти и нефтепродуктов, магистральные газо- и нефтепроводы и другие.

Основными источниками возникновения техногенных катастроф могут быть:

Химическая опасность, так как на территории юга Тюменской области расположено 45 химически опасных объектов. Наибольшую опасность представляют химические опасные объекты в городах Тобольск, Тюмень.

Например, на ОАО «Тобольский водоканал» единовременное количество хлора может достигать 150 т. При возникновении техногенной катастрофы в зону возможного заражения может попасть около 601,5 тыс. человек г. Тобольска и Тобольского района, обеспеченность которых средствами защиты органов дыхания не достаточная. Приобретение новых средств индивидуальной защиты (СИЗ) на территории области проводится в основном объектами экономики города Тюмени, частично организациями г. Ишима. В муниципальных образованиях СИЗ своевременно не освежаются.

Наиболее вероятными источниками техногенных катастроф на нефтегазопродуктопроводах являются компрессорные и дожимные станции, газорегуляторные пункты, нити трубопроводов. Как правило, аварии (разрыв трубопроводов, находящихся под давлением, выброс перекачиваемых продуктов с последующим возгоранием) связаны с низким качеством монтажных работ по прокладке трубопроводов, длительным сроком их эксплуатации, а так же несогласованными действиями при проведении работ вблизи трубопроводов с использованием инженерной техники.

Потенциально-опасные участки магистральных трубопроводов расположены на территории Уватского, Тобольского, Ярковского, Тюменского и Исетского районов.

Транспортировка нефти от месторождений Среднего Приобья, а также Северной группы месторождений, производится по 4 магистральным нефтепроводам в направлении городов Томск, Омск, Альметьевск, Челябинск.

ОАО «Сибнефтепровод» эксплуатирует 2,653 тыс. км магистральных нефтепроводов, проходящих в основном по местности с большим количеством рек, озёр, водотоков и водоёмов. Магистральные нефтепроводы 33 раза пересекают реки Иртыш, Тавда, Тура, Демьянка и другие. Эти нефтепроводы представляют серьёзную потенциальную угрозу экологической безопасности территорий. В случае порыва трубопровода и попадания нефти в реку возможно катастрофическое загрязнение водных бассейнов.

Транспорт природного газа в пределах области осуществляется по системе магистральных газопроводов общей длиной 1,479 тыс. км.

Опасности возникновения ЧС техногенного характера на объектах ЖКХ, связаны в основном с изношенностью основных фондов (износ сетей составляет в среднем 40-50%); гидравлическими испытаниями теплотрасс; повреждениями трасс, связанные с некачественным ремонтом; подвижка грунта в весенний период.

Риск возникновения чрезвычайных ситуаций на тепловых сетях повышается, особенно в холодное время года. Но на сегодняшний день на объектах ЖКХ в системах теплоснабжения, канализации, газоснабжения, водоснабжения периодически возникавшие аварийные ситуации и инциденты зарегистрированы не выше местного уровня, чрезвычайных ситуаций не зарегистрировано.

Так же как и не зарегистрировано чрезвычайных ситуаций, связанных с авариями, на магистральных нефтегазопродуктопроводах.

Несмотря на то, что на территории Тюменской области нет радиационно-опасных объектов, атомных электростанций, объектов ядерного топливного цикла, исследовательских реакторов, оказывающих влияние на радиационную обстановку, специалистами территориальных органов Роспотребнадзора и Росгидромета (Тюменского центра по гидрометеорологии и мониторингу окружающей среды) постоянно проводится радиационный контроль. Случаев обнаружения бесхозных источников ионизирующих излучений пока не зарегистрировано.

Захоронение источников ионизирующего излучения (ИИИ), обнаруженных на территории области проводится путем заключения договора с филиалом «Уральский территориальный округ» ФГУП «РосРАО» г. Екатеринбург. Радиационная обстановка в течение 2015 года в целом была спокойная и расценивается как благополучная.

Администрация области, муниципальных образований постоянно и планомерно проводят работу по обеспечению безопасности для населения и территорий Тюменской области.

Так, в целях оповещения населения, попадающего в зону химического заражения, на 6 ХОО созданы локальные системы оповещения.

На территории городского округа город Ишим расположено 3 ХОО, контроль АХОВ на которых проводится газоанализаторами «Хоббит» и «Колион-701».

В результате проводимых мероприятий по снижению запасов аварийно химически опасных веществ на объектах ОСВ-1, ОСВ-3, ОСК ОАО «Водоканал» города Ишима, количество хлора снижено на 51,7%. Планируется постепенный переход производства на безопасные технологии (УФО - ультрафиолетовое обеззараживание), в настоящее время на ОСК хлор вывезен.

В городе Тобольске завершены работы по выводу из эксплуатации аммиачно - холодильной установки ОАО «Номос». Согласно акту сдачи-приемки от 07.11.2012г. аммиак в количестве 4т, передан ООО «Кургантрансаммиак».

Роль БЖ в поведении человека при ЧС

Каждая опасная и чрезвычайная ситуация имеет свою специфику, зависит от многих условий (место, время, причины, ее вызвавшие, и другие факторы) и требует конкретных действий человека с учетом реально складывающейся обстановки. Тем не менее, есть целый ряд общих положений поведения человека для обеспечения личной безопасности при чрезвычайных ситуациях,

Прежде всего, каждый человек должен выполнять ряд общих правил, позволяющих ему подготовиться к наиболее вероятным для мест проживания чрезвычайным ситуациям, чтобы они не застали врасплох.

Каждый человек должен знать сигналы оповещения и порядок информирования населения при чрезвычайных ситуациях.

В каждом доме необходимо иметь адреса и телефоны организаций (противопожарная служба, полиция, Скорая помощь, орган ГОЧС), в которые в случае чрезвычайной ситуации можно обратиться за помощью.

Важно самому уметь изготавливать простейшие средства индивидуальной защиты и изолировать жилище от внешней среды с помощью необходимых для этого материалов.

На случай эвакуации нужно предусмотреть минимальный набор предметов первой необходимости (документы, одежда, обувь, продукты питания и др.).

К сожалению, результаты проведенного анкетирования среди обучающихся 1 курса нашего учебного учреждения говорят о том, что молодые люди много из этого не знают, считают, что в жизни им это не пригодится. Поэтому и к предмету БЖ относятся иногда несерьёзно, что доказывают результаты анкетирования студентов Ишимского медицинского колледжа в рамках исследования данной работы. Так, 74 % всех опрошенных студентов первого курса считают БЖ одним из лёгких предметов, при этом, учитывая, что в школе изучался предмет «Основы безопасности жизнедеятельности», затруднились ответить на ряд вопросов, например таких как, причины возникновения техногенных катастроф, правила поведения при ЧС, оказание первой медицинской помощи пострадавшим и т.д.

А ведь, безопасность жизнедеятельности (БЖ) как предмет образовательной программы - это целая система знаний и умений по приобретению навыков для обеспечения безопасности жизнедеятельности человека в повседневной жизни и в чрезвычайных ситуациях, оказание первой медицинской помощи, психологической помощи пострадавшим. И самое главное это то, что предмет БЖ формирует сознание, мировоззрение, характер, воспитывает в человеке самые высокие принципы нравственности и морали. Он неразрывно связан с самой жизнью. Этот предмет максимально приближен к реальной действительности, которая окружает обучающихся в стенах образовательного учреждения и за его стенами на улице, среди посторонних людей, в семье, в обществе и т.д.

В нашем учреждении к изучению этого предмета относятся очень ответственно и не только потому, что мы будущие медицинские работники. На занятиях БЖ, включающих в себя основы знаний многих предметов, формируется и воспитывается личность с такими качествами характера как воля, сила духа, выносливость, мужество, честность, терпение, выдержка, психологическая устойчивость к стрессовым ситуациям, ответственность за собственные поступки и слова. А это важно и в плане предотвращения ЧС, в том числе и техногенных катастроф, ведь одной из основных причин катастроф является человеческий фактор (недисциплинированность, безответственность, халатное отношение к своим должностным обязанностям).

Ни в одном из предметов образовательной программы, как в уроках безопасности жизнедеятельности так явно не прослеживается связь между знанием и воспитанием. Потому что, не знание предмета БЖ может стоить слишком дорого: здоровья, разрушений или чьей-то жизни, а чтобы применить эти знания требуются определенные качества характера. Поэтому на уроках и факультативных занятиях в нашем учебном учреждении закладывается умение ориентироваться в сложной ситуации, не растеряться, а при необходимости оказать необходимую помощь пострадавшим. Полученные знания и навыки закрепляются при практическом выполнении нормативов, в ходе объектовых тренировок и семинарских учебных занятий. Обучающиеся второго, третьего курсов нашего учебного учреждения активно принимают участия в конкурсах, конференциях не только городского, но и областного и регионального уровня по БЖ, занимая призовые места. От курса к курсу у обучающихся меняется отношения к данному предмету. Уже 81% обучающихся третьего курса считают знания, полученные на уроках БЖ необходимыми; 21% обучающихся уже применили в жизни знания, полученные в стенах учебного учреждения. Также на 25% повысился уровень самоконтроля, ценностных ориентиров, профессиональных интересов у обучающихся выпускных курсов по сравнению с первокурсниками.

Анализируя данные анкеты нельзя не согласиться с высказыванием Л.Н. Толстого: «Есть знания, необходимые каждому человеку. Пока человек не усвоит всех этих знаний, все другие знания будут во вред ему». Ведь если не заложены в человеке основные воспитательные моменты, высокие принципы морали, будь он сто пядей во лбу, толку от этого бывает мало, а то и вовсе только один вред. Вот потому то и необходимо уделять большое внимание воспитанию обучающихся на уроках БЖ.

Хочется верить, что знания и умения, заложенные на уроках БЖ, в последующем обучающиеся смогут применить на практике уже без помощи преподавателя. Это ещё раз доказывает, что такой необходимый предмет как «Безопасность жизнедеятельности» можно охарактеризовать философским высказыванием Абуль Хасан Рудаки: «Знание - броня от всех бед».

Заключение

Продолжающийся рост количества и доли используемых в промышленности пожаро-, взрыво-, химически опасных технологий, обязывает обратить внимание вопросам природно-техногенной безопасности в государстве.

В настоящее время в России насчитывается огромное количество производственных объектов, которые относятся к потенциально опасным (вероятным).

По данным монографии «Безопасность России» на территории Российской Федерации в настоящее время функционирует около 100 тысяч потенциально-опасных предприятий и объектов, в том числе около 2300 ядерно- и радиационно-опасных, 3500 химически опасных, 70 уникальных инженерных комплексов, включающих плотины и дамбы, более 150 предприятий чёрной и цветной металлургии и около 30 тысяч потенциально опасных объектов транспортного комплекса. В эксплуатации находится более 240 тысяч километров магистральных трубопроводов и почти такая же протяжённость внутрипромысловых трубопроводов.

Ситуация усугубляется тем обстоятельством, что многие потенциально опасные объекты имеют выработку проектного ресурса на 60-70%. Это относится в первую очередь к объектам энергетики, химической, нефтехимической и нефтеперерабатывающей промышленности, чёрной и цветной металлургии, газовой промышленности. В критическом состоянии находятся объекты жилищно-коммунального хозяйства, особенно системы теплоснабжения и водоразводящей сети.

Обеспечение защиты населения и территорий РФ от ЧС, в том числе и от техногенных катастроф, является одной из важнейших задач государственной политики в области национальной безопасности и обеспечения устойчивого развития страны.

К сожалению, многие стихийные бедствия предотвратить невозможно в принципе, а вероятность крупных промышленных аварий и катастроф имеет конечную величину и, судя по мировой статистике, частота крупных аварий, сопровождающихся многочисленными человеческими жертвами и значительным ущербом для окружающей природной среды, имеет тенденцию к возрастанию.

Если учесть тот факт, что в большинстве случаев причиной техногенных катастроф является человеческий фактор, то понятно значение роли уроков БЖ в жизни человека. Даже в древности знание считалось очень сильным оружием и защитой для людей. К тому же знание должно быть именно то, которое действительно полезно для практического применения, которое способно предотвратить беду или защитить в чрезвычайной ситуации. «Мудр не тот, кто знает много, а тот, чьи знания полезны» - считал древнегреческий драматург Эсхил.

Список используемой литературы

    Абрамов В.В. Безопасность жизнедеятельности: учеб. пособие для вузов/- СПб.: Питер. - 2013. - 365 с

    Алымов В.Т. Техногенный риск. Анализ и оценка: учеб. пособие для вузов по специальности «Охрана окр. среды и рацион. использование природ. Ресурсов»/ В. Т. Алымов, Н. П. Тарасова. - М. : Академкнига, 2004. - 224 с.

    Безопасность жизнедеятельности: Учебник для вузов/ С.В.Белов, А.Ф. Козьяков, А.В. Ильницкая. Исправ. и допол.- М.: Высш.шк.; 2006.

    Безопасность жизнедеятельности: Учебник для студ. сред. Б40 учеб. заведений / Э. А. Арустамов, Н. В. Косолапова, Н. А. Прокопенко, Г. В. Гуськов. — М.: Издательский центр «Академия», 2014 — 176 с.

    Косолапова Н.В., Прокопенко Н.А., Побежимова Е.Л. Безопасность жизнедеятельности: учебник для колледжей/ - М. 2012 - 274 с.

    Маньяков В.Д. Безопасность общества и человека в современном мире: Учебное пособие. — СПб.: Политехника, 2005.

    Михайлов Л.А, Соломин В.П., Михайлов А.Л., Старостенко А.В. и др.. Безопасность жизнедеятельности: Учебник для вузов / — СПб.: Питер. — 302 с.: ил.. 2006

    Сергеев В.С. Безопасность жизнедеятельности: учебное пособие. - М. 2010

    Сычев Ю.Н. Безопасность жизнедеятельности в чрезвычайных ситуациях Учебно-практическое пособие/Московский государственный университет экономики, статистики и информатики. — М. , 2005. — 226с.

Главные меры (усилия) человека по борьбе с авариями и катастрофами должны быть направлены на их профилактику и предупреждение. Принятые меры либо полностью исключают, либо локализуют техногенные аварии и катастрофы. В основе таких мер лежит обеспечение надежности технологического процесса.

  • Выполнение требований государственных стандартов и строительных норм и правил, которые направлены на то, чтобы максимально исключить возможность аварии.
  • Жесткая производственная дисциплина. Точное выполнение технологических процессов. Использование оборудования в строгом соответствии с его техническим назначением.
  • Дублирование и увеличение запасов прочности важнейших элементов производства.
  • Чёткая организация службы инспекции контроля и безопасности.
  • Тщательный подбор кадров, повышение практических знаний в объёме выполняемой работы.
  • Оценка условий производства с точки зрения возможности возникновения аварии.

Итак, мы увидели, что техногенные катастрофы детерминированы человеческим фактором, поэтому должна проводиться работа по их профилактике: вестись тестирование техники (механизмов, инженерных сетей) на вопрос её износа, проверяться дисциплина и профессионализм обслуживающего персонала.

Поскольку полностью предотвратить возможность техногенной катастрофы нельзя, то необходимо предусмотреть мероприятия по своевременному оповещению о её возможном начале, планы её локализации, эвакуации населения из пострадавшего района и организация помощи пострадавшим и выжившим в зоне катастрофы.

Возможные техногенные катастрофы в городе Магнитогорск Челябинской области


Проживая в промышленном городе с большим количеством объектов народного хозяйства, невольно задумаешься над вопросом: а какие техногенные катастрофы могут возникнуть? Вот лишь небольшой перечень объектов, которые представляют наибольшую опасность: ПАО «ММК », ОАО «ММК – Метиз », ОАО «МКЗ », Железнодорожная станция «Магнитогорск », ОАО «Магнитогорский молочный комбинат », ОАО «Магнитогорский мясокомбинат », ООО «Магнитогорский птицеводческий комплекс », очистные сооружения, Верхнеуральская плотина.
  • Федеральный закон № 68 от 21 дек. 1994 года «О защите населения от чрезвычайных ситуаций природного и техногенного характера »
  • постановление РФ от 21 мая 2007 г. № 304 «О классификации ЧС природного техногенного характера »
  • закон № 114 по Челябинской области «О защите населения и территорий от чрезвычайных ситуаций природного и техногенного характера » от 29.05.1997г.
  • Постановление от 10.04.2001 г. «О создании центра мониторинга и прогнозирования ЧС природного и техногенного характера »

Еще в 2002 году Постановлением Главы города Магнитогорска был утверждён «Перечень техногенных и природных чрезвычайных ситуаций, характерных для г. Магнитогорска » , с указанием места возможного возникновения, зоны возможного поражения и сил, привлекаемых для устранения катастрофы:

Перечень довольно большой. И большая часть этих объектов представляет не только экономическую и социальную значимость, но и потенциальную опасность для здоровья и жизни людей. Несмотря на относительно благополучную статистику последних лет, существует реальная угроза возникновения чрезвычайных ситуаций природного и техногенного характера на территории города.


Это обусловлено действием ряда объективных и субъективных факторов: наличием потенциально опасных объектов; износом основных производственных фондов в промышленности и инженерных системах города; стихийными природными явлениями и рисками, возникающими в процессе хозяйственной деятельности либо связанными с накопленным экологическим ущербом.

Город Магнитогорск, благодаря особенностям своего географического положения и розы ветров, может быть подвержен следующим техногенным катастрофам в результате чрезвычайных происшествий на промышленных предприятиях города и других хозяйственных объектах:

  • Выброс аммиака и хлора, который может усугубиться пожарами и задымлением из-за возгорания взрывчатых веществ.
  • Заражение близлежащих территорий ядовитыми веществами, используемыми в птицеводческом комплексе и на других предприятиях.
  • Розлив серной и соляной кислоты.
  • Взрывы из-за утечки керосина, ГСМ и природного газа.
  • Прорыв Верхнеуральской плотины.

Таким образом, в создавшихся условиях угроза возникновения техногенной катастрофы на территории города Магнитогорска довольна значительна. Каждому типу катастрофы присущи свои особенности, характер поражений, объем и масштабы разрушений, величина бедствий и человеческих потерь.

Знание причин возникновения катастроф техногенного характер а позволяет при заблаговременном принятии мер защиты, при разумном поведении населения в значительной мере снизить все виды потерь. Все население должно быть готово к действиям в экстремальных ситуациях, уметь владеть способами оказания первой медицинской помощи пострадавшим.

Об аварии на нефтяной платформе Deepwater Horizon человечество никогда не забудет. Взрыв и пожар случились 20 апреля 2010 года в 80 километрах от побережья штата Луизиана, на месторождении Макондо. Разлив нефти стал крупнейшим в истории США и фактически загубил Мексиканский залив. Мы вспомнили крупнейшие техногенные и экологические катастрофы мира, некоторые из которых чуть ли не страшнее трагедии Deepwater Horizon.

Можно ли было избежать аварии? Техногенные катастрофы часто происходят как следствие природных катастроф, но кроме того - из-за изношенного оборудования, жадности, халатности, невнимательности... Память о них служит важным уроком для человечества, потому что природные катастрофы могут повредить людям, но не планете, а вот техногенные несут угрозу абсолютно всему окружающему миру.

15. Взрыв на заводе удобрений в городе Уэст - 15 жертв

17 апреля 2013 года произошел взрыв на заводе по производству удобрений в техасском городе Уэст. Взрыв прогремел в 19:50 по местному времени и он полностью уничтожил завод, который принадлежал местной компании Adair Grain Inc. Взрывом были разрушены расположенные рядом с заводом школа и дом престарелых. Серьёзно пострадали около 75 зданий города Уэст. В результате взрыва погибли 15 человек, около 200 человек получили ранения. Изначально на заводе произошёл пожар, а взрыв случился в тот момент, когда пожарные пытались справиться с огнём. По меньшей мере 11 пожарных погибло.

По словам очевидцев, взрыв был настолько сильным, что его было слышно примерно в 70 км от завода, а Геологическая служба США зафиксировала колебания почвы магнитудой 2,1. "Это было похоже на взрыв атомной бомбы", - говорили очевидцы. Жителей ряда районов рядом с Уэстом эвакуировали из-за утечки аммиака, используемого при производстве удобрений, власти предупредили всех об утечке токсичных веществ. Над Уэстом была введена бесполётная зона на высоте до 1 км. Город напоминал район военных действий...

В мае 2013 года по факту взрыва было заведено уголовное дело. Расследование показало, что компания хранила химические вещества, которые вызвали взрыв, с нарушение требований безопасности. Комитет по химической безопасности США установил, что компания не предприняла необходимых мер для предотвращения пожара и взрыва. Кроме того, на тот момент не существовало правил, которые запрещали бы хранение нитрата аммония вблизи населенных пунктов.

14. Затопление Бостона патокой - 21 жертва

Затопление Бостона патокой случилось 15 января 1919 года после того, как в бостонском районе Норт-энд взорвался гигантский резервуар с мелассой, и волна сахаросодержащей жидкости пронеслась по улицам города с большой скоростью. Погиб 21 человек, около 150 попали в больницы. Катастрофа произошла на алкогольном заводе Purity Distilling Company во времена «сухого закона» (ферментированная меласса в то время широко использовалась для получения этанола). Накануне введения полного запрета владельцы старались успеть сделать как можно больше рома...

Видимо, из-за усталости металла в переполненном резервуаре с 8700 м³ патоки разошлись соединённые заклёпками листы металла. Земля дрогнула, и на улицы хлынула волна патоки высотой до 2 метров. Давление волны было настолько велико, что сдвинуло с путей грузовой состав. Близлежащие здания были затоплены на метровую высоту, некоторые обрушились. Люди, лошади, собаки вязли в липкой волне и гибли от удушья.

В зоне катастрофы был развёрнут передвижной госпиталь «Красного креста», в город вошло подразделение ВМС США - спасательная операция длилась неделю. Патоку убирали с помощью песка, который впитывал вязкую массу. Хотя владельцы фабрики винили во взрыве анархистов, горожане добились от них выплат общей суммой в $ 600 тыс (сегодня это примерно $ 8,5 млн). По словам бостонцев, даже сейчас в знойные дни от старых домов исходит приторный запах карамели...

13. Взрыв на химзаводе Phillips в 1989 -23 жертвы

Взрыв на химзаводе Phillips Petroleum Company случился 23 октября 1989 года, в Пасадене, штат Техас. Из-за оплошности сотрудников произошла крупная утечка горючего газа, и произошёл мощнейший взрыв, эквивалентный двум с половиной тоннам динамита. Бак с 20 000 галлонами газа изобутана взорвался и цепная реакция вызвала еще 4 взрыва.
Во время планового технического обслуживания, на клапанах случайно закрыли воздуховоды. Таким образом, в диспетчерской отображалось, что клапан открыт, в то время как он был как закрытым. Это привело к образованию облака пара, которое взорвалось от малейшей искры. Первоначальный взрыв зарегистрирован равным 3,5 баллам по шкале Рихтера и осколки взрыва были найдены в радиусе 6 миль от взрыва.

Многие из пожарных гидрантов вышли из строя, сильно упало давление воды в оставшихся гидрантах. Пожарным потребовалось более десяти часов, чтобы взять ситуацию под контроль и полностью потушить пламя. Погибло 23 человека, ещё 314 получили ранения.

12. Пожар на пиротехнической фабрике в Энсхеде в 2000 - 23 жертвы

13 мая 2000 года в результате пожара на на пиротехнической фабрике S.F. Fireworks в голландском городе Энсхеде (Enshede) случился взрыв, погибли 23 человека, в том числе четверо пожарных. Пожар начался в центральном здании и распространился на два полных контейнера с фейерверками, незаконно хранящихся за пределами здания. Несколько последующих взрывов произошло с самым большим взрыв чувствовал себя так далеко, как 19 миль.

Во время пожара сгорела и была разрушена значительная часть района Ромбек - сгорели 15 улиц, повреждено 1500 домов, и уничтожено 400 домов. В дополнение к гибели 23 человек, 947 человек получили ранения и 1250 человек остались без крова. Пожарные расчеты прибыли из Германии, чтобы помочь в борьбе с огнем.

Когда S.F. Fireworks построили пиротехническую фабрику в 1977 году, она была расположена далеко от города. По мере того как город рос, новое недорогое жилье в окружило склады, что и повлекло ужасные разрушения, травмы и смерти. Большинство местных жителей не имели ни малейшего представления, что они жили в такой непосредственной близости от пиротехнического склада.

11. Взрыв на химзаводе в Фликсборо - 64 жертв

В городе Фликсборо, Англия 1 июня 1974 года произошел взрыв, погибли 28 человек. Авария случилась на заводе «Нипро», который занимался производством аммония. Катастрофа причинила материальный ущерб на колоссальную сумму - 36 миллионов фунтов стерлингов. Такой катастрофы английская промышленность еще не знала. Химический завод в Фликсборо практически перестал существовать.
Химический завод около поселка Фликсборо специализировался на выпуске капролактама - исходного продукта для получения синтетического волокна.

Авария случилась так: разорвался обходный трубопровод, соединявший реакторы 4 и 6, и пар начал вырываться из отводов. Образовалось облако паров циклогексана, содержащее несколько десятков тонн вещества. Источником возгорания облака послужил, вероятно, факел водородной установки. Из-за аварии на заводе в воздух была выброшена взрывоопасная масса разогретых паров, для воспламенения которых достаточно было малейшей искры. Через 45 минут после аварии, когда грибообразное облако достигло водородной установки, произошел мощный взрыв. Взрыв по своей разрушительной силе был эквивалентен взрыву 45 т тротила, подорванного на высоте 45 м.

Около 2000 зданий, находившихся за пределами предприятия, были повреждены. В деревне Амкоттс, находящейся на другом берегу реки Трент, из 77 сильно пострадало 73 дома. Во Фликсборо, расположенном на расстоянии 1200 м от центра взрыва, из 79 домов разрушилось 72. От взрыва и последующего пожара погибло 64 человека, 75 человек на предприятии и вне его получили травмы различной степени тяжести.

Инженеры завода под давлением хозяев компании "Нипро" нередко шли на отступления от установленного технологического регламента, игнорировали требования безопасности. Печальный опыт этой катастрофы показал, что на химических заводах необходимо иметь быстродействующую автоматическую систему пожаротушения, позволяющую не позднее чем через 3 секунды ликвидировать вогорания твердых химических веществ.

10. Разлив раскаленной стали - 35 жертв

18 апреля 2007 года 32 человек погибли и 6 получили ранения, когда ковш, содержащий расплавленную сталь, упал на заводе Qinghe Special Steel Corporation в Китае. Тридцать тонн жидкой стали, раскаленной до 1500 градусов по Цельсию упал с подвесного транспортера. Жидкая сталь прорвалась через двери и окна в соседнее помещение, где находились рабочие дежурной смены.

Пожалуй, самый ужасный факт, обнаруженный в ходе исследования этой катастрофы в том, что ее можно было бы предотвратить. Непосредственной причиной аварии стало неправомерное использование некондиционного оборудования. Следствие пришло к выводу, что имел место целый ряд недостатков и нарушений безопасности, которые способствовали аварии.

Когда аварийные службы добрались до места катастрофы, их остановил жар расплавленной стали, и они долго были не в состоянии добраться до жертв. После того, как сталь начала охлаждаться, они обнаружили 32 жертвы. Удивительно, но 6 человек чудом пережили эту аварию, и с тяжелейшими ожогами были доставлены в больницу.

9. Крушение состава с нефтью в Лак-Мегантик - 47 жертв

Взрыв состава с нефтью произошёл вечером 6 июля 2013 года в городке Лак-Мегантик в канадском Квебеке. Поезд, принадлежащий компании The Montreal, Maine and Atlantic Railway и перевозивший 74 цистерны с сырой нефтью, сошёл с рельсов. В результате несколько цистерн загорелись и взорвались. Известно о 42 погибших, ещё 5 человек числятся пропавшими без вести. В результате пожара, охватившего город, примерно половина зданий в центре города были уничтожены.

В октябре 2012 года на тепловозе GE C30-7 #5017 при ремонте двигателя, чтобы поскорее завершить ремонт, были применены эпоксидные материалы. В последующей эксплуатации эти материалы разрушились, тепловоз стал сильно дымить. Вытекающие горюче-смазочные материалы скапливались в корпусе турбокомпрессора, что привело к возгоранию в ночь крушения.

Поездом управлял машинист Том Хардинг. В 23:00 поезд остановился на станции Нант, на главном пути. Том связался с диспетчером и сообщил о неполадках с дизелем, сильном чёрном выхлопе; решение проблемы с тепловозом было отложено до утра, и машинист уехал ночевать в гостиницу. Поезд с заведённым тепловозом и опасным грузом был оставлен на ночь на необслуживаемой станции. В 23:50 в службу 911 поступило сообщение о пожаре на головном тепловозе. В нем не работал компрессор, и давление в тормозной магистрали снижалось. В 00:56 давление упало до такого уровня, что ручные тормоза не смогли удерживать вагоны и неуправляемый поезд ушёл под уклон к Лак-Мегантику. В 00:14 поезд на скорости 105 км/ч сошёл с рельсов и оказался в центре города. Вагоны сошли с рельсов, последовали взрывы и горящая нефть разлилась вдоль железной дороги.
Люди в ближайшем кафе, ощутив толчки земли, решили что началось землетрясение и спрятались под столами, в итоге они не успели убежать от огня... Эта железнодорожная катастрофа стала одной из самых смертоносных в Канаде.

8. Авария на Саяно-Шушенской ГЭС - не менее 75 жертв

Авария на Саяно-Шушенской ГЭС - промышленная техногенная катастрофа, произошедшая 17 августа 2009 года - "черный день" российской гидроэнергетики. В результате аварии погибло 75 человек, оборудованию и помещениям станции нанесён серьёзный ущерб, производство электроэнергии приостановлено. Последствия аварии отразились на экологической обстановке акватории, прилегающей к ГЭС, на социальной и экономической сферах региона.

На момент аварии ГЭС несла нагрузку в 4100 МВт, из 10 гидроагрегатов в работе находилось 9. В 8:13 местного времени 17 августа произошло разрушение гидроагрегата № 2 с поступлением через шахту гидроагрегата под большим напором значительных объёмов воды. Персонал электростанции, находившийся в машинном зале, услышал громкий хлопок и увидел выброс мощного столба воды.
Потоки воды быстро затопили машинный зал и помещения, находящиеся под ним. Все гидроагрегаты ГЭС были затоплены, при этом на работавших ГА произошли короткие замыкания (их вспышки хорошо видны на любительском видео катастрофы), выведшие их из строя.

Неочевидность причин аварии (по словам министра энергетики России Шматко, «это самая масштабная и непонятная авария гидроэнергетики, которая только была в мире») вызвала ряд версий, не нашедших подтверждения (от терроризма до гидроудара). В качестве наиболее вероятной причины аварии называют усталостные разрушения шпилек, возникшие в период работы гидроагрегата № 2 с временным рабочим колесом и недопустимым уровнем вибраций в 1981-83 годах.

7. Взрыв на "Пайпер Альфа" - 167 жертв

6 июля 1988 года платформа по добычи нефти в Северном море под названием "Пайпер Альфа" была разрушена в результате взрыва. Платформа “Пайпер Альфа”, установленная в 1976 году, бала самой большой конструкцией на площадке “Пайпер”, принадлежащей шотландской компании “Оксидентал Петролеум”. Платформа располагалась в 200 км к северо-востоку от Абердина и служила центром управления нефтедобычей на площадке.На платформе находилась вертолетная площадка и жилой модуль для 200 нефтяников, работающих посменно. 6 июля на “Пайпер Альфе” произошел неожиданный взрыв. Пожар, охвативший платформу, не дал персоналу даже возможности послать сигнал SOS.

В результате утечки газа и последующего взрыва погибло 167 человек из 226 находившихся в тот момент на платформе, только 59 осталось в живых. Понадобилось 3 недели, чтобы погасить огонь, при сильнейшем ветре (80 миль в час) и 70-футовых волнах. Окончательную причину взрыва установить так и не удалось. Согласно самой популярной версии, на платформе случилась утечка газа, в результате чего для пожара хватило малой искры. Авария на платформе Piper Alpha привела к серьезной критике и последующему пересмотру норм безопасности работ по добыче нефти в Северном море.

6. Пожар в Тяньцзине Биньхай - 170 жертв

В ночь на 12 августа 2015 года два взрыва вспыхнули на участке хранения контейнеров в порту Тяньцзинь. В 22:50 по местному времени начали поступать сообщения о пожаре на расположенных в порту Тяньцзиня складах фирмы «Жуйхай», занимающейся транспортировкой опасных химических веществ. Как выяснили позднее следователи, его причиной послужило самовозгорание высохшей и нагревшейся на летнем солнце нитроцеллюлозы. В течение 30 секунд после первого взрыва, произошел второй - контейнер с нитратом аммония. Местная сейсмологическая служба оценила мощность первого взрыва в 3 тонны тротилового эквивалента, второго - в 21 тонну. Прибывшие на место пожарные долго не могли остановить распространение огня. Пожары бушевали несколько дней и случилось еще 8 взрывов. Взрывы создали огромный кратер.

Взрывы привели к гибели 173 человек, 797 раненых, и 8 человек числятся пропавшими без вести. . Тысячи автомобилей Toyota, Renault, Volkswagen, Kia и Hyundai были повреждены. 7,533 контейнеры, 12,428 автомобилей и 304 здания были разрушены или повреждены. Помимо смерти и разрушения, ущерб составил $ 9 млрд. Выяснилось, что три многоквартирных дома были построены в радиусе одного километра от склада химических веществ, что запрещено китайским законодательством. Власти предъявили обвинения 11 чиновникам из города Тяньцзинь по делу о взрыве. Их обвиняют в халатности и злоупотреблении полномочиями.

5. Валь-ди-Ставе, прорыв плотины - 268 жертв

На севере Италии над деревней Ставе, рухнула плотина Валь-ди-Ставе 19 июля 1985 года. Авария уничтожила 8 мостов, 63 здания, погибло 268 человек. После катастрофы, в ходе расследования было установлено, что имело место плохое техническое обслуживание и малый запас эксплуатационной безопасности.

В верхней из двух плотин, из-за осадков труба для дренажа стала менее эффективной, она была засорена. Вода продолжала поступать в резервуар и давление в поврежденной трубе возрастало, также это вызвало давление на береговую породу. Вода начала проникать в почву, сжижаться в грязь и ослаблять берега, пока, наконец, не произошел размыв. Буквально за 30 секунд вода и грязевые потоки верхней плотины прорвались и хлынули в нижнюю плотину.

4. Обрушение террикона в Намбийи - 300 жертв

К 1990 году Намбийя, шахтерский поселок на юго-востоке Эквадора имел репутацию "агрессивной экосреды". Местные горы были изрыты горняками, пронизаны отверстиями от добычи полезных ископаемых, воздух влажный и наполненный химическими веществами, токсичные газы из шахты и огромный террикон.

9 мая 1993 года, большая часть горы угольного шлака в конце долины рухнула, и под оползнем погибли около 300 человек. 10,000 человек жили в поселке на площади около 1 квадратную мили. Большинство домов города были построены прямо на въезде в туннель на шахту. Специалисты давно предупреждали, что гора стала практически полой. Они говорили, что дальнейшая добыча угля приведет к оползням, и после нескольких дней проливных дождей почва размягчилась, и худшие прогнозы сбылись.

3. Техасский взрыв - 581 жертва

Техногенная катастрофа случилась 16 апреля 1947 года в порту города Техас-Сити, США. Пожар на борту французского судна «Гранкан» (Grandcamp) привёл к детонации около 2100 тонн нитрата аммония (аммиачной селитры), что повлекло за собой цепную реакцию в виде пожаров и взрывов на близлежащих кораблях и нефтехранилищах.

В результате трагедии погиб по меньшей мере 581 человек (включая всех, за исключением одного, сотрудников пожарной охраны Техас-Сити), более 5000 человек получили ранения, 1784 попали в больницы. Порт и значительная часть города были полностью разрушены, многие предприятия были сравнены с землей или сгорели. Более 1100 автомобилей были повреждены и 362 грузовых вагонов искорёжены - имущественный ущерб оценивается в 100 миллионов долларов. Эти события вызвали первый коллективный иск против правительства США.

Суд признал Федеральное правительство виновным в преступной халатности, совершенной правительственными агентствами и их представителями, вовлечёнными в производство, упаковку и маркирование аммиачной селитры, усугубленной грубыми ошибками в ее транспортировке, хранении, погрузке и противопожарных мерах. Было выплачено 1,394 компенсации общей суммой около $17 млн.

2. Бхопальская катастрофа -до 160,000 жертв

Это одна из самых страшных техногенных катастроф произошла в индийском городе Бхопал. В результате аварии на химзаводе, принадлежащем американской химической компании Union Carbide, и производящем пестициды, произошёл выброс ядовитого вещества метилизоцианата. Он хранился на заводе в трёх частично вкопанных в землю ёмкостях, каждая из которых могла вместить около 60 000 литров жидкости.
Причиной трагедии стал аварийный выброс паров метилизоцианата, который в заводском резервуаре нагрелся выше температуры кипения, что привело к повышению давления и разрыву аварийного клапана. В результате 3 декабря 1984 года в атмосферу было выброшено около 42 тонн ядовитых паров. Облако метилизоцианата накрыло близлежащие трущобы и железнодорожный вокзал, находящийся в 2 км.

Бхопальская катастрофа - крупнейшая по числу жертв в современной истории, повлёкшая немедленную смерть по крайней мере 18 тыс человек, из которых 3 тысячи погибли непосредственно в день аварии, а 15 тыс - в последующие годы. По другим данным, общее количество пострадавших оценивается в 150-600 тысяч человек. Большое число жертв объясняется высокой плотностью населения, несвоевременным информированием жителей об аварии, нехваткой медперсонала, а также неблагоприятными погодными условиями - облако тяжёлых паров разносилось ветром.

Union Carbide, ответственная за эту трагедию, в 1987 году в рамках внесудебного урегулирования выплатила жертвам $ 470 млн в обмен на отказ от претензий. В 2010 индийский суд признал семерых бывших руководителей индийского отделения компании Union Carbide виновными в халатности, повлекшей гибель людей. Осуждённые были приговорены к двум годам тюремного заключения и штрафу в размере 100 тыс рупий (примерно $ 2,100).

1. Трагедия на дамбе Баньцяо - 171 000 погибших

В этой катастрофе даже нельзя упрекнуть конструкторов плотины, она была рассчитана на сильные наводнения, но данное было совершенно беспрецедентным. В августе 1975 года в западной части Китая, во время тайфуна прорвало дамбу Баньцяо- погибло около 171,000 человек. Плотина была построена в 1950-х годах для производства электроэнергии и предотвращения наводнений. Инженеры разработали ее с запасом прочности на тысячу лет.

Но в те роковые дни в начале августа 1975 года, тайфун "Нина" сразу же произвел более 40 дюймов осадков, что превысило ежегодное общее количество осадков в этой области всего за один день. После нескольких дней еще более сильных дождей, плотина не устояла и была размыта 8 августа.

Прорыв дамбы вызвал волну высокой 33 футов, 7 миль в ширину, которая шла со скоростью 30 миль в час. В общей сложности более 60 плотин и дополнительных резервуаров были уничтожены из-за разрушения плотины Banqiao. Наводнение разрушило 5,960,000 зданий, сразу погубило 26,000 человек и еще 145,000 умерли позже в результате голода и эпидемий из-за стихийного бедствия.

Что такое катастрофы и как с ними бороться

Множество сложнейших природных процессов, сопровождающихся преобразованием энергии, служат движущей силой постоянного изменения облика нашей планеты – ее геодинамики. Эти же процессы вызывают и разрушительные явления на поверхности и в атмосфере Земли: землетрясения, извержения вулканов, цунами, наводнения, ураганы и др.

За последние полвека число природных катастроф возросло в пять раз, а материальный ущерб от них вырос десятикратно. Причины этого явления – стремительный рост численности населения и экономики и выраженная деградация природной среды. Техногенное же воздействие человека на литосферу не только активизирует развитие природных катастрофических процессов, но и приводит к появлению новых – уже техноприродных.

Борьба со стихийными бедствиями является важным элементом государственной стратегии устойчивого развития. При выработке концепции «борьбы с катастрофами» важно понимать, что человек не в состоянии приостановить или изменить ход эволюционных преобразований планеты – он может только с некоторой долей вероятности предсказывать их развитие и иногда оказывать влияние на их динамику. Поэтому в настоящее время на первый план выходят задачи по своевременному прогнозированию природных катастроф и смягчение их негативных последствий

Природные катастрофы – источники глубочайших социальных потрясений, приводящих к массовым страданиям, гибели людей и огромным материальным потерям. В основе увеличения числа природных катастроф лежат глобальные процессы, такие как рост численности населения и экономики земной цивилизации, деградация природной среды и изменение климата. Борьба со стихийными бедствиями является важным элементом государственной стратегии устойчивого развития. Она должна основываться на принципах разумного хозяйственного использования территорий, прогнозировании грозящих опасностей и проведении превентивных мероприятий.

Человек с древнейших времен испытывал страх перед грозными проявлениями могущества природы. Как показывает история нашей цивилизации, многие природные катастрофы сопровождались крупными социальными потрясениями. Гибель Помпей в Италии в результате извержения вулкана Везувий (79 г. н. э.) – не единственный пример того, как процветавшие города приходили в упадок в результате стихийных бедствий, а потом и вовсе исчезали. Известны случаи, когда экономические потери от природных катастроф превышали величину валового национального продукта отдельных стран, в результате чего их экономика оказывалась в критическом состоянии. Например, только прямой ущерб от землетрясения в Манагуа (1972 г.) был равен двукратному размеру годового валового продукта Никарагуа.

Анализ исторических данных свидетельствует, что количество природных катастроф на Земле неуклонно растет: только за последние полвека частота масштабных бедствий увеличилась в пять раз. Связанные же с ними материальные потери возросли почти в десять раз, достигая в отдельные годы 190 млрд дол. США. Ожидается, что к 2050 г. социально-экономический ущерб от опасных природных процессов (при существующем уровне защиты) составит почти половину прироста глобального валового продукта. В России средний ущерб от природно-технических катастроф в настоящее время – около 3 % валового внутреннего продукта.

Во всеобщей проблеме безопасности катастрофические явления рассматриваются как один из важнейших дестабилизирующих факторов, препятствующих устойчивому развитию человечества.

Но что, собственно, означает это понятие – природные катастрофы? Каков механизм их зарождения и развития? Можно ли избежать их разрушительных последствий? И почему, несмотря на непрерывный научно-технический прогресс, человечество продолжает чувствовать себя незащищенным?

Разрушительная энергия

По мнению выдающегося советского ученого-естествоиспытателя В. И. Вернадского, земная поверхностная оболочка не может рассматриваться как область только вещества, это и область энергии.

Действительно, на поверхности Земли и в прилегающих к ней слоях атмосферы идет множество сложнейших процессов, сопровождающихся преобразованием энергии. Среди них эндогенные процессы реорганизации материи внутри Земли и экзогенные взаимодействия вещества внешней земной оболочки и физических полей, а также воздействие солнечной радиации.

Все эти процессы являются движущей силой постоянного преобразования облика нашей планеты – ее геодинамики . И они же вызывают разрушительные явления на ее поверхности и в атмосфере: землетрясения, извержения вулканов, цунами, наводнения, ураганы и др.

Природные катастрофы принято подразделять на типы в зависимости от среды, через которую происходит энергетическое воздействие – через земную твердь, воздушную или водную стихию.

Наиболее страшные из них – это, пожалуй, землетрясения . Мощные ударные волны, вызванные глубинными процессами, приводят к разрывам грунта, что оказывает ужасающее разрушительное воздействие на среду обитания человека. Величина выделяемой при этом энергии иногда превышает 1018 Дж, что соответствует взрыву сотни атомных бомб, подобных той, что была сброшена на Хиросиму в 1945 г.

Наиболее сильно страдает от землетрясений Китай, где они происходят почти ежегодно. Например, еще в 1556 г. в результате ряда мощнейших сейсмоударов погибло 0,8 млн человек (около 1 % населения страны). Только за последнее десятилетие погибло около 80 тыс. жителей Китая, а общий экономический ущерб превысил 1,4 трлн юаней.

В России в последние годы наиболее разрушительным стало землетрясение на севере о. Сахалин в мае 1995 г., которое полностью разрушило пос. Нефтегорск и погубило более 2 тыс. человек.

Но все же самым мощным источником энергии на нашей планете являются вулканы . Выброс энергии при вулканическом извержении может стократно превышать «вклад» самого сильного землетрясения. Ежегодно в результате вулканической деятельности в атмосферу и на поверхность Земли выбрасывается примерно 1,5 млрд т глубинного вещества.

В настоящее время на Земле насчитывается около 550 исторически активных вулканов (каждый восьмой из них находится на российской земле). За историческое время непосредственно вследствие вулканической активности в мире погибло не менее 1 млн человек.

В конце XIX в. произошло одно из крупнейших извержений вулкана Кракатау в Юго-Восточной Азии. Миллионы кубометров вулканического пепла, выброшенного в атмосферу, поднялись на высоту около 80 км. В результате наступила «полярная ночь» – на несколько месяцев вся Земля погрузилась в полумрак. Прямые солнечные лучи не достигали поверхности планеты, поэтому резко похолодало. Эту ситуацию позднее сравнивали с феноменом «ядерной зимы» - потенциальным последствием взрыва сверхмощной термоядерной бомбы на поверхности Земли.

Весной прошлого года мир пережил очередную природную катастрофу – извержение вулкана в Исландии, от которого пострадала экономика многих (особенно европейских) стран.

Два сходных по мощности землетрясения 1980-х гг. – в Спитаке (Армения) и Сан-Франциско (Калифорния, США) – имели очень разные последствия. Первое погубило около 40 тыс. человек, второе – всего 40 (!). Причина – различия в качестве использованных строительных конструкций и в организации предупредительных мер

Землетрясения и извержения вулканов, происходящие на водных пространствах, часто приводят к возникновению цунами . Волна, образующаяся в открытом океане при вулканическом взрыве или сейсмическом толчке, у берега может приобрести чудовищную разрушительную силу. Библейский потоп и гибель Атлантиды приписывают извержениям вулкана в Средиземном море, сопровождавшимся цунами.

В XX в. только в Тихом океане было отмечено более двухсот цунами. В декабре 2004 г. череда крупных волн, обрушившихся на северо-восточное побережье Индийского океана, унесла более 200 тыс. человеческих жизней, а экономические потери составили 10 млрд дол.

Библейскую легенду о всемирном потопе часто приходится вспоминать и жителям стран, оказывающихся во власти грандиозных наводнений – затопления местности в результате резкого подъема уровня воды в реках, озерах, водохранилищах. Наводнения опасны сами по себе и к тому же провоцируют множество других природных бедствий – обвалы, оползни, сели.

Одно из самых страшных наводнений произошло в 1887 г. в Китае, когда вода в р. Хуанхэ за считанные часы поднялась на высоту восьмиэтажного дома. В результате погибло около 1 млн жителей этой речной долины.

В прошлом столетии, по данным ЮНЕСКО, в результате наводнений погибло 4 млн человек. Одно из последних сильных наводнений произошло в Чехии летом 2002 г. Вода залила улицы сотен населенных пунктов и городов, включая Прагу, в которой оказались затоплены 17 станций метро.

Подобные крупные катастрофические явления бывают и в России. Так, во время весеннего паводка 1994 г. на р. Тобол случился перелив воды через защитную дамбу г. Курган. В течение двух недель тысячи жилых домов оставались затопленными по крыши. Спустя семь лет произошло еще более разрушительное наводнение на р. Лена в Якутии.

Наконец, нельзя не упомянуть бушующую воздушную стихию: циклоны, штормы, ураганы, смерчи… Ежегодно на земном шаре возникает в среднем около 80 катастрофических ситуаций, связанных с этими явлениями. Океанские побережья часто страдают от тропических циклонов, обрушивающих на континенты ураганные потоки воздуха со скоростью более 350 км/ч, мощные ливневые осадки (до 1000 мм за несколько дней) и штормовые волны высотой до 8 м.

Так, три крупных разрушительных урагана осенью 2005 г. нанесли американскому континенту ущерб в 156 млрд дол. На этом фоне ураганы, гулявшие на рубеже тысячелетий по Западной и Северной Европе, выглядят более скромно – от них потерь было на порядок меньше.

Вездесущее человечество

Одна из основных причин увеличения числа жертв и материальных потерь в результате природных катастроф – неудержимый рост человеческой популяции.

В древние времена численность человечества изменялась незначительно, периоды ее роста чередовались с периодами спада в результате смертности от эпидемий и голода. Вплоть до начала XIX в. население Земли не превышало 1 млрд чел. Однако с наступлением индустриального периода общественного развития ситуация резко изменилась: уже спустя 100 лет население удвоилось, а к 1975 г. превысило 4 млрд чел.

Рост человеческой популяции сопровождается процессом урбанизации. Так, если в 1830 г. городская часть населения планеты составляла чуть более 3 %, то в настоящее время в городах компактно проживает не менее половины человечества. Общая численность населения Земли ежегодно увеличивается в среднем на 1,7 %, но в городах этот рост идет гораздо более быстрыми темпами (на 4,0 %).

Рост населения планеты приводит к освоению малопригодных для проживания людей участков: склонов холмов, пойм рек, заболоченных территорий. Ситуация часто усугубляется отсутствием заблаговременной инженерной подготовки осваиваемых территорий и использованием для застройки конструктивно несовершенных зданий. В результате города все чаще оказываются в центре разрушительных стихийных бедствий, где страдания и гибель людей приобретают массовый характер.

Промышленно-технологическая революция привела к глобальному вмешательству человека в наиболее консервативную часть окружающей среды – литосферу. Еще в 1925 г. В. И. Вернадский отметил, что человек своей научной мыслью создает «новую геологическую силу». Современная геологическая деятельность человека по масштабам стала сопоставима с природными геологическими процессами. Например, в ходе строительных работ и при добыче полезных ископаемых в год перемещается более 100 млрд т горных пород, что примерно вчетверо больше массы минерального материала, переносимого всеми реками мира в результате размыва суши.

Техногенное воздействие человека на литосферу приводит к значительным изменениям в окружающей среде, активизируя развитие природных и инициируя появление новых – уже техноприродных – процессов. К последним относятся опускание территорий в результате глубинной добычи полезных ископаемых, наведенная сейсмичность, подтопление, карстово-суффозионные процессы, появление разного рода физических полей и т. д.

Таким образом, в современной экономике развиваются две противоположные тенденции: глобальный валовой доход растет, а составляющие «природный капитал» жизнеобеспечивающие ресурсы (вода, почва, биомасса, озоновый слой) деградируют. Это происходит потому, что промышленное развитие, призванное служить прежде всего экономическому прогрессу, вошло в противоречие с природной средой, поскольку перестало учитывать реальные пределы устойчивости биосферы.

Например, некоторыми из причин увеличения частоты и масштабов наводнений являются вырубка лесов, осушение водно-болотных угодий, уплотнение почвенного покрова. Действительно, такое «мелиоративное» воздействие приводит к ускорению поверхностного стока с водосбора в речное русло, поэтому во время экстремальных осадков или таяния снега уровень воды в реках резко повышается.

В адское пекло?

Многих людей волнует вопрос – чего нам ожидать в будущем? Согласно библейским откровениям, человеческую цивилизацию погубит огонь. Судя по глобальным изменениям климата на протяжении последних 150 лет, движение к такому «концу света» уже можно считать начавшимся.

По данным Всемирной метеорологической организации, глобальное повышение температуры составило около 0,8 °C. На региональном уровне наблюдаются более контрастные изменения. Например, в северных регионах России за последние 30 лет среднемноголетняя температура воздуха выросла на 1,0 °C, что примерно в 2,5 раза превышает скорость тренда глобальной температуры. Следует заметить, что это различие обусловлено преимущественно повышением средних зимних температур, в то время как в летние сезоны температура может даже слегка понижаться.

В ряде регионов мира в последнее десятилетие летом иногда наблюдалась аномальная жара. Так, в августе 2003 г. температура в некоторых странах Западной Европы поднималась до +40 °C, что вызвало гибель от теплового удара более 70 тыс. человек.

Несмотря на существование различных точек зрения на причины глобальных климатических изменений, сам факт потепления на Земле является неоспоримым. Дальнейшее увеличение температуры воздуха способно оказать как положительное, так и отрицательное воздействие на природную среду, приведя к опустыниванию, затоплению и разрушению морских побережий, сходу с гор ледников, отступанию вечной мерзлоты и т. п.

Острейшей гуманитарной проблемой становится нехватка питьевой воды. Сильнейшие засухи отмечались в последние годы в Латинской Америке, Северной Африке, Индии и Пакистане. Ожидается, что в ближайшем будущем площадь территорий, испытывающих острый дефицит влаги, существенно расширится. Число «экологических беженцев» продолжает быстро расти.

Одна из наиболее серьезных опасностей, связанных с глобальным потеплением, – таяние ледового покрова Гренландии и высокогорных ледников. По данным спутниковых наблюдений, с 1978 г. площадь морского льда в Антарктике сокращается в среднем на 0,27 % ежегодно. Одновременно уменьшается и толщина ледовых полей.

Таяние ледников и тепловое расширение воды привело к повышению уровня Мирового океана на 17 см за последние 100 лет. Ожидается, что в ближайшие годы уровень океана будет подниматься в 5-10 раз быстрее, что приведет к крупным финансовым затратам на обеспечение безопасности прибрежных низменных территорий. Так, при подъеме уровня Мирового океана на полметра Нидерландам потребуется около 3 трлн евро для борьбы с затоплением, а на Мальдивских островах защита одного лишь погонного метра побережья обойдется в 13 тыс. дол.

Потепление будет сопровождаться и деградацией многолетнемерзлых горных пород в криолитозоне, составляющей значительную часть территории нашей страны. Отмечено, что за прошедшее столетие площадь распространения вечномерзлых грунтов в Северном полушарии сократилась на 7 %, а максимальная глубина промерзания уменьшилась в среднем на 35 см. При сохранении существующей климатической тенденции граница сплошной вечной мерзлоты за десятилетие переместится к северу на 50-80 км (Осипов, 2001).

Деградация криолитозоны вызовет развитие таких опасных процессов, как термокарст – опускание территории в результате вытаивания льдов и образования наледей. Это, несомненно, усугубит проблему безопасности объектов газовой и нефтяной отраслей при освоении минеральных ресурсов Севера.

Профилактика катастроф

До недавнего времени усилия многих стран по «уменьшению опасности» стихийных бедствий были направлены лишь на ликвидацию их последствий, оказание помощи пострадавшим, организацию технических и медицинских услуг, поставку продуктов питания и т. п. Однако устойчивая тенденция к увеличению частоты катастрофических событий и размера связанного с ними ущерба делает эти мероприятия все менее эффективными.

При выработке концепции «борьбы с катастрофами» важно понимать, что человек не в состоянии приостановить или изменить ход эволюционных трансформаций планеты – он может только с некоторой долей вероятности прогнозировать их развитие и иногда оказывать влияние на их динамику. Поэтому в настоящее время специалисты считают приоритетными новые задачи: предупреждение природных катастроф и смягчение их негативных последствий.

Центральное место в стратегии борьбы со стихией занимает проблема оценки риска , т. е. вероятности катастрофического события и величины ожидаемых человеческих жертв и материальных потерь.

Степень воздействия природной опасности на людей и объекты инфраструктуры оценивается показателем их уязвимости . Для людей это снижение способности выполнять свои функции вследствие гибели, потери здоровья или увечья; для объектов техносферы – уничтожение, разрушение или частичное повреждение объектов.

Регулировать развитие большинства природных опасностей – весьма сложная задача. Многие природные явления, такие как, например, землетрясения и извержения вулканов, вообще не поддаются прямому управлению. Но имеется многолетний положительный опыт воздействия человека, в частности, на некоторые гидрометеорологические явления.

Так, в научных организациях Росгидромета были разработаны технологии внесения активных реагентов в облачные поля при помощи ракетной, авиационной и наземной техники с целью искусственного увеличения и перераспределения атмосферных осадков, рассеивания туманов в окрестностях аэропортов, предотвращения градобития сельскохозяйственных культур. Стало возможным регулирование атмосферных осадков во время техногенных катастроф. Так, после взрыва на Чернобыльской атомной электростанции в 1986 г. был предотвращен дождевой смыв продуктов радиационного загрязнения в речную сеть.

Значительно чаще превентивные меры осуществляются косвенным образом, путем повышения устойчивости и защищенности по отношению к природным опасностям и самих людей, и инфраструктуры. Среди наиболее важных мер по снижению их уязвимости рациональное использование земель, тщательная инженерная подготовка объектов инфраструктуры и защита территорий, на которых они размещаются, организация средств предупреждения и экстренного реагирования.

Участки внешне однородной территории с разнообразными геоморфологическими, гидрогеологическими, ландшафтными и другими условиями реагируют на природные воздействия неодинаково. Например, в низинных участках, сложенных слабыми водонасыщенными грунтами, интенсивность сейсмических колебаний может оказаться в несколько раз выше, чем на соседнем участке, сложенном скальными породами.

Очевидно, что для снижения уязвимости и повышения безопасности необходимо строго обоснованно и ответственно подходить к выбору земельных участков для строительства населенных пунктов, промышленных и гражданских объектов, элементов жизнеобеспечивающих систем и т. д. Для решения этой задачи проводится инженерно-геологическое районирование территории, которое заключается в выявлении участков с одинаковыми или близкими геологическими характеристиками и их ранжировании по степени пригодности для хозяйственного освоения и устойчивости к воздействию природных и техногенных опасностей.

Для сейсмоопасных территорий составляется также карта сейсмического микрорайонирования. Ее основное назначение – выделять зоны различной сейсмической опасности (балльности) с учетом всех факторов, влияющих на распространение в геологической среде упругих волн. Например, при участии Института геоэкологии им. Е. М. Сергеева РАН было проведено подобное зонирование Имеретинской низменности на территории Адлерского района, где возводится комплекс сооружений для Олимпийских игр 2014 г.

Природная опасность – экстремальное явление в литосфере, гидросфере, атмосфере или космосе. Риск природной опасности, согласно терминологии ООН, – это ожидаемые социальные и материальные потери в количественном измерении в данном районе за определенный период времени.
Оценка риска производится на основе данных о вероятности проявления природной опасности, ее физических параметрах, а также о месте и времени возникновения.
Если природная опасность появляется на урбанизированных или хозяйственно-освоенных территориях и воздействует непосредственно на людей и объекты материальной сферы, то происходит реализация риска со всеми вытекающими последствиями.
Уязвимость характеризует неспособность людей, а также элементов социальной и материальной сферы противостоять природным явлениям. Выражается в относительных единицах или процентах.
Процедура анализа риска заключается в вычислении ожидаемых потерь при проявлении природной опасности на основе ее количественной оценки и определения величины уязвимости реципиентов риска (людей и объектов).
В случае, когда рассчитанный уровень риска оказывается неприемлемым (критерии приемлемости пока очень субъективны), осуществляют управление риском, т. е. выполняют мероприятия по его снижению. Одни из них непосредственно воздействуют на развивающиеся опасные природные явления, другие способствуют уменьшению уязвимости техносферы и повышению безопасности людей

Нередко возникает необходимость использовать заведомо непригодные для строительства земли, например, участки морских побережий и долин рек, склонов гор, территории с закарстованными и просадочными грунтами. В этом случае проводят превентивные инженерные мероприятия, направленные на повышение устойчивости территорий и защиту самих сооружений: возводят сплошные стены и дамбы, строят дренажные системы и водосбросы, производят поднятие территории с помощью отсыпки грунта, укрепляют грунты путем их уплотнения, цементации и армирования.

Недавний пример крупномасштабного защитного гидротехнического строительства – возведение защитной дамбы, которая перекрыла часть Финского залива и устье Невы. Потребность в подобном сооружении была велика, так как практически ежегодно за счет ветрового нагона из Балтийского моря воды Невы поднимались выше 1,5 м – уровня, в расчете на который проектировался Санкт-Петербург. Это приводило к затоплению отдельных районов города. Законченная в 2009 г., дамба выдерживает подъем воды свыше 4 м, что полностью избавляет жителей от угрозы наводнения.

Однако защита территории и даже рациональный выбор участка под строительство не являются достаточными условиями безопасности. Основная причина гибели людей в природных катастрофах связана с обрушением жилых и промышленных зданий. Поэтому необходимо совершенствование проектных решений, использование более прочных материалов, а также диагностика состояния уже построенных зданий и сооружений и периодическое укрепление их конструкций.

Успешное управление природной безопасностью не может существовать без системы предупреждения и экстренного реагирования, которая включает в себя средства наблюдения за развитием опасных процессов (средства мониторинга ), оперативной передачи и обработки получаемой информации, оповещения населения о назревающей опасности.

Мониторинг – важнейшее звено системы прогнозирования и предупреждения. Прогностический мониторинг предназначен для организации регулярных наблюдений за аномальными явлениями природы или геоиндикаторами, отражающими их развитие. Проведение такого мониторинга в течение длительного времени позволяет создавать банки данных и временные ряды наблюдений, анализ которых дает возможность выяснять закономерности динамики опасного процесса, моделировать причинно-следственные связи его развития и предсказывать возникновение экстремальных ситуаций.

Для смягчения последствий от «мгновенно» развивающихся катастрофических процессов (например, землетрясений) в случае отсутствия надежных методов их прогнозирования целесообразно применять так называемый охранный мониторинг. Он настраивается на экстремальную фазу катастрофического события и позволяет без вмешательства человека автоматически принимать срочные меры по минимизации последствий опасного процесса за считанные секунды до наступления критического момента.

Чаще всего по сигналу охранной мониторинговой системы осуществляется отключение объекта от энергообеспечивающих систем (газ, электричество), оповещение персонала и др. Такие системы устанавливают на особо ответственных и опасных объектах, прежде всего на атомных станциях, нефтеперерабатывающих заводах, морских платформах нефтедобычи, насосных станциях химических продуктопроводов и т. п.

Примером охранного мониторинга может служить система сейсмической безопасности, основанная на применении акселерометров (измерителей величины ускорения) сильных движений. Она была разработана в Институте геоэкологии им. Е. М. Сергеева РАН и установлена на нефтедобывающих платформах, расположенных на шельфе о. Сахалин. Анализ показаний приборов с помощью специального алгоритма дает возможность различать колебания объекта, вызванные сейсмическими и иными причинами. Поэтому система подает тревожный сигнал только тогда, когда уровень заданной пороговой интенсивности превышен, и не реагирует на другие сотрясения. Так исключается возможность «ложной тревоги».

В последние десятилетия наметились опасные тенденции в развитии природных процессов, во многом обусловленных ростом численности населения и экономики земной цивилизации. Необратимый рост числа катастрофических событий, в том числе техноприродного происхождения, выдвигает в качестве важного государственного приоритета оценку природных рисков и разработку методов борьбы с ними.

Эффективное управление рисками опирается на современный уровень знаний о природных явлениях, системную организацию наблюдений за опасными процессами, адекватную культуру хозяйственной деятельности и принятие ответственных управленческих решений на разных уровнях власти. Стратегию управления рисками следует осуществлять во всех проектах и инвестиционных программах, связанных со строительством, образованием, социальным обеспечением, здравоохранением.

После стремительного прорыва в космос человечество вновь обращает свой взгляд к общему дому – планете Земля. Общепланетные проблемы в наступившем столетии должны занять важное место среди фундаментальных и практических задач, ибо от их решения во многом зависит будущее нашей цивилизации.

Литература

Глобальная экологическая перспектива (Гео-3): прошлое, настоящее и перспективы на будущее / Ред. Г. Н. Голубев. М.: ЮНЕПКОМ, 2002. 504 с.

Осипов В. И. Природные катастрофы на рубеже XXI века // Вестник РАН. 2001. Т. 71, № 4. С. 291-302.

Природные опасности России: в 6-ти т. / Под общ. ред. В. И.Осипова, С. Шойгу. М.: Издательская фирма КРУК, 2000-2003: Природные опасности и общество / Под ред. В. А. Владимирова, Ю. Л. Воробьева, В. И. Осипова. 2002. 248 с.; Сейсмические опасности / Под ред. Г. А. Соболева. 2001. 295 с.; Экзогенные геологические опасности / Под ред. В. М. Кутепова, А. И. Шеко. 2002. 348 с. ; Геокриологические опасности / Под ред. Л. С. Гарагуля, Э. Д. Ершова. 2000. 316 с.; Гидрометеорологические опасности / Под ред. Г. С. Голицына, А. А. Васильева. 2001. 295 с.; Оценка и управление природными рисками / Под ред. А. Л. Рагозина. 2003. 320 с.

В статье использованы фотографии вулканов с сайта www.ngdc.noaa.gov/hazard/volcano.shtml Министерства торговли, Национального управления по исследованию океанов и атмосферы и Национальной информационной службы спутниковых данных об окружающей среде США