Пожарная сигнализация для трансформаторных подстанций. Инструкция по тушению пожаров на подстанциях


1. Общие положения

1.1. Настоящая инструкция разработана в соответствии с Правилами противопожарного режима в Российской Федерации, утв. постановлением Правительства РФ от 25.04.2012 № 390, и устанавливает требования пожарной безопасности для трансформаторной подстанции.
1.2. Каждый работник должен четко знать и выполнять требования Правил противопожарного режима, не допускать лично и останавливать действия других лиц, которые могут привести к пожару или загоранию.
1.3. Работники должны проходить противопожарный инструктаж, регулярно участвовать в противопожарных тренировках и проходить проверку знаний Правил противопожарного режима.
1.4. Работники должны быть обучены приемам работы с огнетушителем, пожарным краном в случае пожара и знать место их установки, которое обозначено знаками.

2. Меры пожарной безопасности на трансформаторной подстанции

2.1. Трансформаторные подстанции должны быть защищены от попадания в них снега и дождя.
2.2. Двери всех трансформаторных помещений должны быть выполнены из негорючих материалов и открываться наружу или в другое помещение, не связанное с постоянным пребыванием людей и не являющееся эвакуационным путем.
2.3. Доступ в трансформаторные помещения должен быть ограничен.
2.4. Надежная эксплуатация трансформаторов и их пожарная безопасность должны обеспечиваться:
содержанием в исправном состоянии устройств охлаждения, регулирования и защиты оборудования;
качественным выполнением ремонтов основного и вспомогательного оборудования, устройств автоматики и защиты.
2.5. Маслоприемные устройства под трансформаторами должны содержаться в исправном состоянии для исключения при аварии растекания масла и попадания его в кабельные каналы и другие сооружения.
2.6. Запрещается при пожаре на трансформаторе сливать масло из корпуса, так как это может привести к распространению огня на его обмотку и затруднить тушение пожара.
2.7. В местах установки пожарной техники должны быть оборудованы и обозначены места заземления.
2.8. Запрещается включение в эксплуатацию трансформаторов на электростанциях и подстанциях, если не обеспечена полная готовность к работе установок пожаротушения, предусмотренных проектом.
2.9. Пуск автоматической установки пожаротушения трансформатора (реактора) должен производиться только после снятий напряжения при срабатывании газовой и дифференциальной защиты и дистанционно со щита управления.
2.10. При любом виде пуска установки пожаротушения на трансформаторе должны быть отключены через выходные реле все его выключатели. Установки пожаротушения должны приводиться в действие после отключения выключателей или при отсутствии напряжения на трансформаторе.
2.11. В установке пожаротушения трансформатора должна предусматриваться выдача сигнала на закрытие отсечного клапана, устанавливаемого в трубопроводе масла между трансформатором и расширителем. Последующее открытие клапана производится вручную.
2.12. Необходимо свести к минимуму выделение токсичных газов и непрозрачного дыма из трансформатора в случае пожара.

3. Действия работников при пожаре

3.1 Работник, обнаруживший пожар или признаки горения (задымление, запах гари, повышение температуры), немедленно должен сообщить по телефону в пожарную охрану и сотрудникам охраны, указать объект и место возникновения пожара, сообщить свою фамилию.
3.2. При возникновении пожара в трансформаторном помещении необходимо:
проверить, отключился ли автоматический масляный выключатель загоревшегося трансформатора, если нет, то немедленно его отключить;
отключить загоревшийся трансформатор разъединителями от высокого и низкого напряжения;
открыть аварийный вентиль для слива масла из горящего трансформатора в маслосборное устройство (емкость);
приступить к тушению пожара имеющимися огнетушителями, а в крайнем случае - песком;
при угрозе переброски огня на аппаратуру, находящуюся под горящим трансформатором, или осаждении копоти и сажи на работающую аппаратуру и воздушные провода принять меры к снятию с них напряжения.

Наиболее сложной и достаточно распространенной проблемой является пожаротушение трансформаторов. Ведь именно трансформаторы считаются достаточно пожароопасными объектами на всей подстанции. Такое суждение сформировалось ввиду использования горючего масла в качестве охлаждающей жидкости, а также изоляции. И только правильная эксплуатация трансформатора становится залогом того, что масло не вспыхнет от возможного короткого внутреннего замыкания.

Оперативно проведенное пожаротушение в случае непредвиденных обстоятельств может значительно снизить количество человеческих жертв либо же возникшие в связи с этим убытки. Поэтому на современных трансформаторных подстанциях предусмотрено использование определенных технических средств, принадлежащих к автоматической пожарной системе. И их наличие обеспечивает своевременное обнаружение, локализацию, а также тушение пожара.

Пожаротушение трансформаторных станций – виды автоматических установок

На самом деле наличие подобной автоматической системы не может быть панацеей от всех бед, но сможет существенно облегчить жизнь.

И уже в зависимости от того, какой она состав имеет, различают несколько видов:
  • пенные;
  • аэрозольные;
  • водяные;
  • порошковые;
  • газовые;
  • комбинированные.

Системы, которые используются при автоматическом пожаротушении трансформаторов, также могут классифицироваться и по другим признакам. Например, по степени их автоматизации они бывают либо же ручными, либо же автоматическими, автоматизированными. В зависимости от способа тушения различают поверхностные, локально-поверхностные, объемные или же применяются локально-объемные. Системы по виду самого привода делятся на электрические, с механическим приводом, пневматические или гидравлические.

В любом случае подобные системы являются гарантом вашей безопасности, ведь никто точно не знает, насколько быстро прибудет пожарная служба в случае с загоранием трансформаторной подстанции. А именно тогда каждая минута идет на вес золота – пожар может распространяться на огромные площади очень быстро. При этом даже малейшее промедление может стоить чьей-то жизни.

Промышленное серийное производство трансформаторных подстанций налажено многими предприятиями. Проекты подстанций различного типа предусматривают не только их надежную функциональность в качестве преобразующего и распределительного узла, но и безопасную эксплуатацию.

Многие КТП устанавливаются в населенных пунктах, на предприятиях, вблизи транспортных магистралей. Пожарная безопасность трансформаторных подстанций - одно из главных требований при монтаже и эксплуатации.С этой целью разработаны определенные правила строительства и оборудования трансформаторных подстанций, обязательные для выполнения как строителями, так и энергетиками.

Эти правила собраны в специальных документах - «Руководстве по защите ТП от пожаров», «Требованиях пожарной безопасности» относительно КТП и других сборниках. В них проанализированы основные причины возгораний и указаны возможности минимизации последствий.

Основные источники возможных возгораний

Риск возгорания кабелей при коротком замыкании, воспламенение масляных высоковольтных выключателей, трансформаторов тока довольно велик и возможность возникновения пожара по вине электрооборудования полностью устранить нельзя. Но можно многократно уменьшить последствия этих возгораний.

    • Одна из наибольших опасностей возгорания угрожает кабельным линиям. Кабели и провода от трансформаторных станций к распределительным щитам должны прокладываться в огнестойких каналах раздельного типа и быть оборудованы негорючей изоляцией. Все линии электропередач внутри и снаружи здания должны оборудоваться автоматикой аварийного отключения при перегрузках или КЗ.
    • Линии, к которым подключены устройства пожарной безопасности, оборудуются огневой защитой или изоляцией с таким классом огнестойкости, чтобы при пожаре система могла сохранять работоспособность столько времени, сколько требуется по нормативам, чтобы эвакуировать весь персонал.
    • Трансформаторные подстанции типа КТПБ - одни из самых безопасных в плане пожарной безопасности. Несгораемые стены и пол позволяют локализовать пожар внутри здания без угрозы его распространения. Но внутри помещений не должны храниться горючие материалы, баллоны с газом, ветошь и другие опасные в пожарном отношении вещества.
    • Все работы внутри подстанции, сопряженные с появлением искр или высокой температурой - сварка, резка болгаркой, сверление производятся только при полном соблюдении соответствующих правил и наличии средств оперативного пожаротушения.
    • Распределительные щиты выполняются из негорючего материала и надежно изолируются от оборудования. Все электрораспределительное оборудование и трансформаторы должны соответствовать классу помещения по взрывоопасности и пожароопасности и регулярно проверяться согласно плану ТО.
    • Вся растительность, угрожающая распространением горения от подстанции, или способная привлечь огонь от сторонних источников к ТП должна удаляться по всему периметру участка, на котором расположен трансформатор. Кровли и перекрытия подстанций выполняются из несгораемых материалов. Все деревянные элементы обрабатываются антипиренами.

Я воспользовался услугами компании «Вариант Безопасности». Помимо подготовки проекта пожарной безопасности трансформаторной станции они занимаются установкой пожарно-охранной сигнализации в театрах, школах, дошкольных учреждениях, гостиницах, работают с другими предприятиями. Если интересно, в Москве их можно найти здесь.

Электроэнергетическая отрасль в Российской Федерации долгое время развивалась и существовала под эгидой единственной государственной компании. Естественно, что в таких экономически тепличных условиях конкурентное ведение энергетического хозяйства абсолютно не интересовало руководителей данной компании. Для определения затрат на те или иные мероприятия, в том числе на обеспечение пожарной безопасности, различными НИИ на основе плановых экономических показателей разрабатывались специальные нормы, которые никоим образом не учитывали современные технологии и тенденции развития отрасли. В результате уже после реформы РАО ЕЭС и внедрения рыночной модели мы вынуждены оперировать разработанными в те годы техническими стандартами, лишь незначительно доработанными в наше время.

Интересно было бы проанализировать, как развивалась и совершенствовалась нормативная база в странах Запада, где экономическая составляющая всегда являлась базисом для разработки стандартов. Весьма наглядным примером является зарубежный опыт организации пожарной безопасности для трансформаторного подстанционного оборудования.

Пожар на подстанции в первую очередь опасен тем, что может разгерметизироваться бак с трансформаторным маслом. Последствия могут быть катастрофическими. Возможен взрыв, выделение ядовитых веществ, розлив горючих жидкостей. Помимо опасности для людей любое возгорание трансформатора вызывает повреждение дорогого энергетического оборудования и, как следствие, отключения в энергосистеме и существенный экономический ущерб. Более 20% всех пожаров на подстанциях захватывает маслонаполненное оборудование – силовые выключатели и трансформаторы. Естественно, что вопрос обеспечения пожарной безопасности на таких объектах стоит особенно остро.

Российское нормативное законодательство описывает рекомендации и правила обеспечения пожарной безопасности для трансформаторного оборудования в следующих специальных стандартах:

  • РД 34.15.109-91 Рекомендации по проектированию автоматических установок водяного пожаротушения масляных силовых трансформаторов;
  • РД 153-34.0-49.101-2003 инструкция по проектированию противопожарной защиты энергетических предприятий.

Если учесть, что последний документ – это, по сути, слегка доработанный стандарт 1987 г., то можно говорить о том, что с 1991 г. развитие систем безопасности в этой сфере остановилось. И это при том что пожарными службами и институтами был накоплен опыт тушения трансформаторов в самых разных условиях. Была разработана вполне эффективная тактика тушения таких пожаров, есть рекомендации по выбору средств противопожарной защиты. Но все это не нашло отражения в официальных стандартах и нормативных документах, на основании этих рекомендаций не были составлены аналитическая и экономическая модели, оценивающие риски использования тех или иных средств защиты. Российские нормотворцы ограничились включением трансформаторных подстанций в требования по оснащению таких объектов системами автоматической пожарной сигнализации и пожаротушения в зависимости от площади объекта в соответствии с введенным в 2009 г. СП 5.13130.2009 «Системы противопожарной защиты.

Установки пожарной сигнализации и пожаротушения автоматические. Нормы и правила проектирования».

Наши зарубежные коллеги работают в других условиях и в другом нормативном поле. В первую очередь мы посетим город Куинси (штат Массачусетс, США). В этом городе находится штаб-квартира одной из самых известных международных организаций по обеспечению пожарной, электрической и строительной безопасности – Национальной ассоциации противопожарной защиты (NFPA). По национальным стандартам NFPA работают специалисты многих стран на всех континентах (даже в Антарктиде на полярных станциях). Стандарты NFPA являются общепризнанными и активно развиваются с момента основания организации в 1896 г. В том числе часть российских современных нормативных документов берет свое начало в стандартах NFPA.

При рассмотрении вопроса противопожарной защиты трансформаторов в формате стандартов NFPA мы, так же как и в российской НТД, получаем NFPA 15 «Стандарт для водяных стационарных систем противопожарной защиты».

Для российского инженера, воспитанного на технических стандартах, регламентирующих такие нюансы, как форма форсунки и размер болтов для ее крепления, американский стандарт выглядит неожиданно. Буквально на одной странице приводятся все основные требования к организации водяного пожаротушения трансформатора. Здесь точно не будут указаны размеры болтов, но зато даны точные характеристики системы по расходу воды и расположению основных элементов. Все остальное – простор для воображения разработчика и проектировщика.

Стандарт был принят в 2001 г. и по состоянию на 2017 г. пункт 7.4.4, в котором, собственно, и содержатся требования к системе пожаротушения трансформаторов, изменений не претерпел. Казалось бы, налицо та же стагнация, которую мы видим и в российском нормативном законодательстве с разницей в 10 лет, однако это не совсем так. С момента появления NFPA 15 многие частные компании, занимающиеся строительством и модернизацией трансформаторных подстанций, начали его критиковать и искать альтернативные способы обеспечения безопасности на рассматриваемых объектах. Основная критика стандарта заключалась в его неэкономичности. На тушение трансформатора в соответствии с NFPA 15 уходит нецелесообразно большое количество воды. Так, нормативный расход воды на пожаротушение одного трансформатора составляет 250 галлонов в минуту. Один галлон – это примерно 3,8 л. Нормативная продолжительность пожаротушения в соответствии со стандартом составляет 1 час. Таким образом, общий объем воды для тушения 2 подстанционных трансформаторов – 11 400 л. Практически 11,5 куб. м воды.

Конечно, в нашей стране нет недостатка в водных ресурсах, да и российские нормы в этом отношении несколько иные. В соответствии с РД 34.15.109-91 нормативный расход воды для тушения трансформатора не превышает 4 л в секунду (то есть в 4 раза меньше). Однако во многих странах, использующих NFPA 15, имеются достаточно большие проблемы с водоснабжением. Крупные трансформаторные подстанции, как правило, располагаются достаточно далеко от городов. Даже если рядом есть природные водоемы, нужны мощные насосы и система фильтров для использования такой воды в противопожарных целях. В любом случае описанная система потребует постоянного обслуживания несколькими специалистами. В результате инвестиции на обеспечение противопожарной защиты могут превысить собственно затраты на реконструкцию или модернизацию подстанции.

Несколько позже появился стандарт NFPA 850 «Рекомендуемые практические способы противопожарной защиты для оборудования электрических генерирующих станций и высоковольтных конвертирующих подстанций», в соответствии с которым необходимо иметь запас воды для тушения трансформаторного оборудования уже в течение 2 часов.

Еще одна проблема: выпуск такого большого количества воды требует обеспечения объекта продуманной дренажной системой. В противном случае горящее масло может вместе с водой перелиться за бортик участка, и мы получим небольшую (или большую) техногенную и экологическую катастрофу.

В результате многие компании на Западе начали отказываться от использования данного стандарта и обеспечивать безопасность на объекте исключительно пассивными методами и средствами защиты. С одной стороны, это привело к развитию пассивных и иных противопожарных средств. Например, в странах Персидского залива, где вода дороже «черного золота», развитие получили гипоксические системы противопожарной защиты. В таких системах трансформатор окружен воздухом с пониженным содержанием кислорода, в котором процесс горения невозможен в принципе. С другой стороны, появились более дешевые средства пожаротушения.

Одной из первых идей, получивших свое развитие в области защиты трансформаторов, стало использование противопожарной пены. Идея не является новой, поскольку пена активно использовалась для тушения воспламенившихся углеводородов, к которым можно отнести и трансформаторное масло. В результате развитие инженерной мысли в данном направлении уже через несколько лет привело к изменению стандарта NFPA 11, в котором была нормативно закреплена возможность использования пены для тушения трансформаторов и определено минимальное время тушения, составляющее 5 минут. Главным преимуществом использования пены в качестве средства тушения горящих трансформаторов стало значительное (более чем в пять раз) снижение расхода воды. Развитие технологий производства пенообразователя специально для использования при тушении электроустановок позволило, с одной стороны, достичь минимальных концентраций собственно пенообразователя (до 2%), а с другой – снизить время тушения пожара.

Другим направлением стало развитие систем пожаротушения тонкораспыленной водой. Высокая эффективность таких систем для тушения горящего электроэнергетического оборудования сейчас является общеизвестным фактом, однако первое признание эти системы получили именно на уровне стандарта NFPA. В меморандуме о стандарте NFPA 750, опубликованном в ноябре 2013 г., было однозначно рекомендовано использование систем с тонкораспыленной водой для тушения электроэнергетического оборудования, в том числе трансформаторного. Это позволяет сэкономить водные ресурсы и снизить затраты на подведение специальных коммуникаций к подстанциям.

Помимо NFPA существует еще одна международная организация, которая заинтересована в развитии базы стандартов обеспечения пожарной безопасности трансформаторных подстанций. Это CIGRE – Международный совет по большим системам высокого напряжения. Штаб-квартира данной организации находится в Париже. CIGRE получила признание как ведущая электроэнергетическая ассоциация, деятельность которой охватывает технические, экономические, организационные проблемы в области электроэнергетики, а также вопросы регулирования и охраны окружающей среды.

Международный совет по большим электроэнергетическим системам CIGRE был создан в 1921 г. и объединяет инженеров и специалистов, представляющих электроэнергетику и электротехнику многих стран мира. Проблемой заинтересовались уже сами энергетики, которые решили создать универсальный документ, описывающий ситуацию возникновения пожара на подстанции, учитывая все возможные причины, за исключением умышленной диверсии и возгорания от соседних объектов. Результатом такого труда стал охранно -пожарная сигнализация опубликованный в июне 2013 г. рабочей группой А2.33 CIGRE документ под названием «Руководство по обеспечению пожарной безопасности трансформаторов».

Указанный документ является наиболее полным на сегодняшний день, описывающим проблему обеспечения пожарной безопасности для трансформаторного оборудования, который будет интересен как инженерам-энергетикам, так и специалистам в области систем безопасности. Текст руководства можно найти в свободном доступе на английском языке.

Цель разработки документа заключалась в представлении практических и экономически эффективных стратегий для предотвращения пожаров и контроля риска его возникновения. Отдельно отмечается, что данное руководство не заменяет соответствующие национальные или локальные стандарты и правила, которые должны учитываться.

Всего документ состоит из 9 глав, в которых содержится следующая информация:

  • перечень основных международных стандартов, в которых описывается проблема обеспечения пожарной безопасности (в том числе документы, выпущенные NFPA, IEC – Международной электротехнической комиссией, IEEE – Институтом инженеров электротехники и электроники, CEATI – Международным центром совершенствования энергетики посредством технологических инноваций, национальными организациями Германии, Австралии и др.);
  • физические процессы горения и сценарии развития пожаров на подстанции в трансформаторном оборудовании;
  • расчет вероятности возникновения пожара в конкретном энергетическом подстанционном хозяйстве;
  • описание физического процесса возникновения электрической дуги в трансформаторе; расчет вероятных диапазонов энергии, температуры, объема выделяемого газа и давления при образовании дуги; способы сброса и ограничения роста давления в трансформаторном баке при возникновении дуги;
  • рекомендации по использованию систем противопожарной защиты для конкретного оборудования, определение вероятности эффективной работы систем противопожарной защиты, методология проектирования и разработки систем противопожарной защиты;
  • способы снижения риска возникновения пожара в трансформаторном оборудовании, рекомендации по ранжированию рисков, основанные на сопоставлении экономичности мероприятий и приемлемости степени риска в каждом конкретном случае;
  • использование специальных установок для защиты жизни и здоровья человека, а также энергетического оборудования;
  • рекомендации по планированию восстановления работоспособности энергетического объекта, минимизации последствий и экономических потерь в результате пожара;
  • рекомендации по улучшению национальных стандартов области противопожарной защиты трансформаторного оборудования.

Документ содержит большое количество иллюстраций и фотографий, показывающих процесс и последствия пожара трансформаторного оборудования, расположение оборудования систем противопожарной защиты, графики развития физических процессов и многое другое.

В стандарте есть описание как пассивных средств противопожарной защиты, так и активных систем пожаротушения (дренчерных, спринклерных, тонкораспыленной водой, гипоксических и газовых) трансформаторов, расположенных на открытом воздухе и в помещениях, в жилых зданиях и на промышленных предприятиях. В целом можно говорить о том, что в рекомендациях CIGRE собраны последние на тот момент технические достижения по обеспечению пожарной безопасности трансформаторных подстанций.

Хотелось бы упомянуть еще об одном стандарте – IEEE 979 «Руководство по противопожарной защите подстанций». Данный документ был разработан в 2012 г. Институтом инженеров электротехники и электроники. Этот стандарт платный, поскольку IEEE является коммерческой организацией. До выхода стандарта CIGRE именно в этом документе содержались наиболее интересные и экономически обоснованные рекомендации по обеспечению пожарной безопасности трансформаторного оборудования, однако с июля 2013 г. он фактически устарел, а основные рекомендации IEEE нашли свое отражение в общедоступном документе, составленном CIGRE.

На этой позитивной ноте хотелось бы завершить краткий обзор иностранной нормативной базы, посвященной проблеме обеспечения противопожарной безопасности трансформаторного оборудования. Читателям, интересующимся этим вопросом и владеющим иностранными языками, возможно, интересно было бы ознакомиться с первоисточниками, описанными в статье. Оригинальные названия этих стандартов представлены в списке использованной литературы. Очевидно, что развитие инженерной мысли в сфере обеспечения пожарной безопасности сложного электроэнергетического оборудования нашло отражение в стандартах и рекомендациях ведущих мировых организаций.

Хотелось бы, чтобы мировой опыт использовался и при разработке российских стандартов.

Использованная литература:

  1. Cigré Technical Brochure 537 Guide for Transformer Fire Safety Practices
  2. NFPA 15 Standard for Water Spray Fixed Systems for Fire Protection
  3. NFPA 750 Standard for Water Mist Fire Protection Systems
  4. NFPA 850 Recommended Practice for Fire Protection for Electric Generating Plants and High Voltage Direct Current Converter Stations
  5. NFPA 11 Standard for Low-, Medium-, and High-Expansion Foam
  6. NFPA Fire Protection Handbook
  7. IEEE 979 Guide of Substation fire protection
  8. IEC 61936-1 Power installation exceeding 1 kV AC
  9. Protection of High Voltage Power Transformers, FireFlex Systems Inc.

Обеспечение пожарной безопасности на электрических подстанциях (ПС) требует грамотного и ответственного подхода, ведь несмотря на то, что вероятность пожара в подстанции мала, последствия возгорания могут стать катастрофическими из-за тонн взрывоопасного трансформаторного масла. Чтобы свести все возможные риски к нулю, при установке защитных систем требуется использовать только самое надёжное оборудование. На примере крупнейшей подстанции Подмосковья - «Одинцово» - рассмотрим передовые технологии в области пожарной безопасности.

Новый энергообъект Подмосковья

Сегодня ПС «Одинцово» обеспечивает электроэнергией более 40 тыс. потребителей в промышленном, социальном и жилом секторах одноимённого района Московской области. Подстанция была построена ещё в 1938 году. За прошедшее время от первоначальной установки практически ничего не осталось, так как объект постоянно модернизируется и совершенствуется. В 2014 г. завершилась очередная реконструкция, ставшая самой масштабной в энергетической отрасли Подмосковья за последние несколько лет. Основной задачей проведённых работ было увеличение мощности подстанции со 120 до 286 МВА. Для этого потребовалось строительство КРУЭ 1 110 кВ, монтаж четырёх трансформаторов (два по 63 МВт внутренней установки и два по 80 МВт наружной), монтаж закрытых распределительных устройств (10 и 6 кВ). Проект финансировался по губернаторской программе «Наше Подмосковье», капиталовложения составили 1568,9 млн. руб 2 .

Реконструкция помогла решить давнюю задачу - ликвидировать дефицит мощности в Одинцовском районе. Энергообъект позволит построить почти 1,5 млн кв. м нового жилья - это пятая часть от общего показателя во всём Подмосковье и два годовых объёма в Одинцовском районе и западной части Новой Москвы. Благодаря ПС «Одинцово» стало возможным появление первой ветки наземного метро на участке Москва – Одинцово. Кроме того, повышение мощности подстанции увеличило надёжность электроснабжения железнодорожных веток на Белорусском и Киевском направлениях.

Питающий центр нового поколения

При оборудовании распределительной подстанции в Одинцово использовались разработки только ведущих производителей - компаний «Бреслер», ОАО «Электрозавод», Siemens, GRUNDFOS и пр. Впервые в Московском регионе на базе ПС «Одинцово» началось использование КРУЭ 110 кВ, разработанного китайской компанией XD Electric и произведённого в России. Олег Бударгин, глава ОАО «Россети», отметил, что реализация данного проекта является показательным примером успешного международного энергетического сотрудничества России и Китая и открывает широкие возможности для дальнейшей реализации программы развития электроэнергетики Московской области. КРУЭ отличается компактностью: если ранее комплектное распределительное устройство занимало более 5800 кв. м, то сейчас оно располагается в зале площадью всего 238 кв. м, то есть в 24 раза меньшей. За счёт того, что оборудование КРУЭ находится в закрытом помещении, оно полностью защищено от воздействия внешней среды, экологично и бесшумно.

Подстанция «Одинцово» максимально отвечает требованиям надёжности, эффективности и безопасности. В ходе проекта смонтированы новейшие цифровые системы связи, телемеханики, оптоволоконные каналы связи. Организован отвод масла от силовых трансформаторов, благодаря которому исключается возможность загрязнения почвы нефтепродуктами. Безопасность ПС и окружающих её построек обеспечивает современная система пожаротушения, которая стала одним из самых технически сложных и грамотных с инженерных решений, реализованных за последнее время. Проект признан лучшим в номинации «Безопасность» на региональном этапе всероссийского конкурса «Премия Грундфос-2014» 3 . Ознакомимся подробнее с устройством защиты от огня на рассматриваемой ПС 110 кВ.

Защита от огня

Пожаротушение ПС «Одинцово» выполнено в соответствии со всеми действующими нормативными документами, в частности СО 34.49.101-2003 «Инструкция по проектированию противопожарной защиты энергетических предприятий» и СП 5.131130.2009 «Система противопожарной защиты. Установки пожарной сигнализации и пожаротушения автоматические». Для обеспечения безопасности предусмотрено:

  • Автоматическое пожаротушение автотрансформаторов распылённой водой при помощи дренчерных оросителей ОПДР-15;
  • Автоматическое пожаротушение кабелей закрытой подстанции при помощи дренчерных оросителей ДВВо-10;
  • Наружное пожаротушение зданий и сооружений из пожарных гидрантов, установленных на кольцевом противопожарном водопроводе;
  • Внутреннее пожаротушение в зданиях из пожарных кранов.

Грамотно подобрать оборудование для каждого из указанных процессов помогли соответствующие вычисления. Так, расчётный расход воды для пожаротушения на подстанции складывается из трёх составляющих: объём воды на автоматическое тушение трансформатора, расход из внутренних пожарных кранов и от наружного пожаротушения. В итоге суммарное расчётное потребление воды на нужды пожаротушения составляет 118,4 л/с, или 427,0 м3/час, а требуемый напор в системе – 82,0 м. Необходимое давление воды в системе противопожарного водопровода достигается при помощи комплектной насосной установки Hydro MX от GRUNDFOS, ведущего мирового производителя насосного оборудования. Это оборудование может применяться в спринклерных и дренчерных системах водяного и пенного пожаротушения, а также в системах с гидрантами.

Данная установка Hydro MX базируется на двух консольно-моноблочных насосах серии NB (один рабочий, один резервный) производительностью 427,0 м3/час, напором 62 м и мощностью 110 кВт каждый. Управление насосами осуществляется при помощи системы управления Control MX. Такое решение способно в случае аварии быстро обеспечить подачу больших объёмов воды. «Помещение, в котором установлено оборудование пожаротушения, имеет небольшую площадь, что сыграло существенную роль при реализации проекта, но благодаря компактным размерам установки Hydro MX мы успешно справились с данным ограничением, - отмечает Евгений Стренаков, проектировщик компании «СевЗап НТЦ» филиал «Институт Тулаэнергосетьпроект», занимавшейся реализацией проекта на ПС «Одинцово». - На сегодняшний день система пожаротушения подстанции «Одинцово» прошла испытания и введена в эксплуатацию».

Всё по-новому

Решающим фактором при выборе оборудования для системы пожаротушения стало то, что установки Hydro MX собираются в России, в подмосковном городе Истра, а их компоновка и алгоритмы функционирования разработаны в соответствии с ФЗ №123 «Технический регламент о требованиях пожарной безопасности» и сводом правил СП 5.131300.2009 «Системы противопожарной зашиты. Установки пожарной сигнализации и пожаротушения автоматические». Кроме того, в 2014 г., после вступления в действие нового ГОСТ Р 53325-2012 «Техника пожарная. Технические средства пожарной автоматики», «ГРУНДФОС» представил обновлённые установки Hydro MX 1/1 с приборами управления пожарными (ППУ) Control MX 1/1.

Оборудование стало универсальным: теперь одна установка может использоваться для дренчерного и спринклерного пожаротушения и в системе с кранами и гидрантами. Также расширены возможности регулирования - при помощи ППУ можно выявлять такие неисправности силовых и сигнальных линий, как обрыв и короткое замыкание, а также управлять одной задвижкой с электроприводом (3х380 В). «Несмотря на то, что после принятия ГОСТ Р 53325-2012 прошло почти 1,5 года, его требованиям соответствует лишь 20% противопожарного оборудования, присутствующего сейчас на рынке, - акцентирует внимание Роман Марихбейн, руководитель по развитию бизнеса Департамента промышленного оборудования компании «ГРУНДФОС». - Главное преимущество обновлённых установок Hydro MX от GRUNDFOS - полное соответствие всем отечественным нормам».

Самый печальный пример пожара на трансформаторной подстанции в истории отечественной энергетики - возгорание ПС на Васильевском острове в Санкт-Петербурге в 2002 году. Тогда в огне оказались четыре масляных трансформатора, и каждую минуту мог прогреметь взрыв. Сотрудники полиции эвакуировали людей и оцепили потенциально опасную зону. Чтобы ликвидировать аварию, пришлось обесточить огромный район - сотни домов, больницы и детские сады остались без электричества, пропала связь со станциями «скорой помощи», остановился электротранспорт. Город оказался на грани чрезвычайного положения. Как выяснилось позже, загоревшаяся подстанция была построена в 1926 году, а последний ремонт и замена оборудования проводились на ней в 1970-х гг. Этот случай ещё раз доказывает важность своевременной реконструкции энергообъектов и необходимость использования опыта уже реализованных проектов, таких как ПС 110 кВ «Одинцово».

Пресс-служба компании «ГРУНДФОС»

1 Комплектное распределительное устройство с элегазовой изоляцией

2 Согласно данным «Схемы перспективного развития электроэнергетики Московской области на период 2014-2018 гг.»

3 Традиционный всероссийский конкурс компании «ГРУНДФОС», цель которого – развитие современных инженерных систем зданий и сооружений. В 2014 г. за звание лучшего боролись более 830 проектов из всех федеральных округов.