Внутреннее пожаротушения для трансформаторных подстанций. Инструкция по тушению пожаров на подстанциях


1. Общие положения

1.1. Настоящая инструкция разработана в соответствии с Правилами противопожарного режима в Российской Федерации, утв. постановлением Правительства РФ от 25.04.2012 № 390, и устанавливает требования пожарной безопасности для трансформаторной подстанции.
1.2. Каждый работник должен четко знать и выполнять требования Правил противопожарного режима, не допускать лично и останавливать действия других лиц, которые могут привести к пожару или загоранию.
1.3. Работники должны проходить противопожарный инструктаж, регулярно участвовать в противопожарных тренировках и проходить проверку знаний Правил противопожарного режима.
1.4. Работники должны быть обучены приемам работы с огнетушителем, пожарным краном в случае пожара и знать место их установки, которое обозначено знаками.

2. Меры пожарной безопасности на трансформаторной подстанции

2.1. Трансформаторные подстанции должны быть защищены от попадания в них снега и дождя.
2.2. Двери всех трансформаторных помещений должны быть выполнены из негорючих материалов и открываться наружу или в другое помещение, не связанное с постоянным пребыванием людей и не являющееся эвакуационным путем.
2.3. Доступ в трансформаторные помещения должен быть ограничен.
2.4. Надежная эксплуатация трансформаторов и их пожарная безопасность должны обеспечиваться:
содержанием в исправном состоянии устройств охлаждения, регулирования и защиты оборудования;
качественным выполнением ремонтов основного и вспомогательного оборудования, устройств автоматики и защиты.
2.5. Маслоприемные устройства под трансформаторами должны содержаться в исправном состоянии для исключения при аварии растекания масла и попадания его в кабельные каналы и другие сооружения.
2.6. Запрещается при пожаре на трансформаторе сливать масло из корпуса, так как это может привести к распространению огня на его обмотку и затруднить тушение пожара.
2.7. В местах установки пожарной техники должны быть оборудованы и обозначены места заземления.
2.8. Запрещается включение в эксплуатацию трансформаторов на электростанциях и подстанциях, если не обеспечена полная готовность к работе установок пожаротушения, предусмотренных проектом.
2.9. Пуск автоматической установки пожаротушения трансформатора (реактора) должен производиться только после снятий напряжения при срабатывании газовой и дифференциальной защиты и дистанционно со щита управления.
2.10. При любом виде пуска установки пожаротушения на трансформаторе должны быть отключены через выходные реле все его выключатели. Установки пожаротушения должны приводиться в действие после отключения выключателей или при отсутствии напряжения на трансформаторе.
2.11. В установке пожаротушения трансформатора должна предусматриваться выдача сигнала на закрытие отсечного клапана, устанавливаемого в трубопроводе масла между трансформатором и расширителем. Последующее открытие клапана производится вручную.
2.12. Необходимо свести к минимуму выделение токсичных газов и непрозрачного дыма из трансформатора в случае пожара.

3. Действия работников при пожаре

3.1 Работник, обнаруживший пожар или признаки горения (задымление, запах гари, повышение температуры), немедленно должен сообщить по телефону в пожарную охрану и сотрудникам охраны, указать объект и место возникновения пожара, сообщить свою фамилию.
3.2. При возникновении пожара в трансформаторном помещении необходимо:
проверить, отключился ли автоматический масляный выключатель загоревшегося трансформатора, если нет, то немедленно его отключить;
отключить загоревшийся трансформатор разъединителями от высокого и низкого напряжения;
открыть аварийный вентиль для слива масла из горящего трансформатора в маслосборное устройство (емкость);
приступить к тушению пожара имеющимися огнетушителями, а в крайнем случае - песком;
при угрозе переброски огня на аппаратуру, находящуюся под горящим трансформатором, или осаждении копоти и сажи на работающую аппаратуру и воздушные провода принять меры к снятию с них напряжения.

Одним из сравнительно новых направлений развития автоматизации в электроэнергетике является создание автоматизированных систем управления технологическими процессами (АСУ ТП) электрической подстанции. Переход к массовой цифровизации в различных отраслях экономики в этом отношении не обошел стороной и объекты сетевой инфраструктуры

Ярослав Мироненко
Заместитель генерального директора АО "РЭС Групп"

АСУ ТП подстанции представляет собой одновременно программно-технический комплекс (ПТК), решающий различные задачи сбора, обработки, анализа, визуализации, хранения и передачи технологической информации и автоматизированного управления оборудованием трансформаторной подстанции, и соответствующие действия персонала по контролю и оперативному управлению технологическими процессами подстанции, выполняемые во взаимодействии с данным ПТК. Одним из модулей, входящих в состав АСУ ТП подстанции, помимо чисто технологических (определение ресурса РПН трансформаторов, контроль состояния изоляции высокого напряжения, анализ аварийных ситуаций, контроля и управления электропотреблением), является модуль обеспечения безопасности энергообъекта.

Ключевые компоненты безопасности

Безопасность обеспечивается целым комплексом различного оборудования, интегрированного в АСУ ТП, в том числе системами:

  • релейной защиты и автоматики;
  • автоматического пожаротушения;
  • охранной сигнализации;
  • контроля и управления доступом на объект;
  • автоматической пожарной сигнализации и управления эвакуацией.

К модулю технологической безопасности также можно отнести системы охлаждения трансформаторного оборудования и аварийного оперативного питания. Все вышеперечисленные системы тесно интегрированы между собой, что позволяет повысить безопасность энергообъекта.

Функционирование модуля пожарной безопасности

Обычно интеграция систем пожарной безопасности представляет собой связь между системами пожарной сигнализации, пожаротушения и оповещения о пожаре. В редких случаях питание данных систем может осуществляться от единой шины аварийного питания, но зачастую для каждого контрольно-исполнительного прибора предусматривается собственная аккумуляторная батарея. При включении модуля пожарной безопасности в АСУ ТП подстанции количество перекрестных связей между отдельными системами пожарной безопасности и технологическими системами автоматики резко возрастает.

Пожарная сигнализация в системе сбора и передачи данных

Наиболее простым примером является включение подсистемы автоматической пожарной сигнализации в интегрированную систему сбора и передачи телеинформации. Такие решения используются для организации непрерывного автоматизированного сбора данных о параметрах электрической сети и учета электроэнергии на необслуживаемых трансформаторных подстанциях, начиная с уровня напряжения 6–10 кВ. Система собирает сведения о положении коммутационных аппаратов и состоянии РЗА, данные об электрических величинах тока, напряжения, мощности и энергии с приборов учета электроэнергии и датчиков телемеханики, а также информацию с датчиков охранной (открытия дверей и окон, движения, проникновения в шкафы с оборудованием) и пожарной сигнализации и передает их в единый диспетчерский центр электросетевой организации. В случае возникновения внештатной ситуации ответственный диспетчер сможет оперативно на нее отреагировать.


Данный подход нашел свое отражение в технической политике крупнейшей сетевой организации Российской Федерации ПАО "Россети", в соответствии с которой для оперативного контроля и управления сетевыми объектами 6–10 кВ предусматривается передача данных от датчиков и приборов пожарной сигнализации в соответствующую автоматизированную систему технологического управления.

Автоматика пожаротушения

Помимо данных от датчиков автоматической пожарной сигнализации, в диспетчерский центр сетевой организации также могут поступать данные от системы автоматического пожаротушения. Это может быть как общая диспетчерская информация для отслеживания готовности системы (например, данные самодиагностики), так и сведения о включении режима "Тушение" и связанных с этим процессов.

В данном случае информация от системы пожаротушения может использоваться АСУ ТП подстанции для передачи в другие системы, например:

  • в систему контроля и управления доступом для блокирования доступа к помещению с пожаром;
  • в систему оповещения о пожаре для информирования персонала;
  • в систему управления вентиляцией для отключения приточной вентиляции.

Такое взаимодействие противопожарных и инженерных систем в настоящий момент активно используется на самых различных объектах без интеграции с АСУ ТП. Специфика электроэнергетической отрасли в этом случае заключается в необходимости работы единого диспетчерского центра, который, как правило, уже существует для технологического контроля и управления энергообъектом.

Обеспечение технологической защиты

Система автоматического пожаротушения может не только передавать данные в АСУ ТП, но и принимать их. Автоматика пожаротушения в составе модуля "Технологическая автоматика объектов электроэнергетики" включена в контур работы релейной защиты и автоматики (РЗиА) согласно стандарту "Системный оператор единой энергетической системы" СТО 59012820.29.020.002-2012. РД 34.15.109-91 "Рекомендации по проектированию автоматических установок водяного пожаротушения масляных силовых трансформаторов" установлено, что пуск пожаротушения трансформатора должен предусматриваться от следующих защит, действующих на отключение трансформатора:

  • 2-й ступени газовой защиты;
  • дифференциальной защиты;
  • устройства контроля изоляции вводов для блочных трансформаторов, соединенных с генераторами без выключателей, для трансформаторов, устанавливаемых в помещениях, и для трансформаторов, устанавливаемых на объектах без постоянного обслуживающего персонала.

Для понимания необходимости интеграции РЗиА с автоматикой пожаротушения для указанных защит могут быть представлены следующие характеристики.

Газовая защита

Газовая защита предназначена для отключения трансформатора 110 кВ и выше от сети в случае возникновения внутренних повреждений в баке силового масляного трансформатора. Принцип действия данного защитного устройства основан на движении поплавка в масле расширительного бака трансформатора, который замыкает/размыкает пару контактов автоматики. В случае межвитковых коротких замыканий либо при нарушении изоляции листов стали магнитопровода трансформатора образуется газ, который вытеснят масло из бака реле, поплавок опускается, контакты замыкаются. Реле также может сработать при критическом уровне масла в баке трансформатора. Все вышеперечисленные ситуации являются аварийными, потенциально пожароопасными.

Дифференциальная защита

Дифференциальная защита трансформатора является основной защитой трансформатора и служит для защиты от коротких замыканий обмоток трансформатора и токопроводов, находящихся в зоне действия данной защиты. Принцип действия данной защиты основан на сравнении токов нагрузки каждой из обмоток трансформатора. В нормальном режиме на выходе реле дифференциальной защиты отсутствует ток небаланса. В случае возникновения короткого замыкания возникает ток небаланса – дифференциальный ток, и реле действует на полное отключение трансформатора от сети. Короткое замыкание в обмотке трансформатора является наиболее пожароопасной технологической аварией на подстанции.

Устройства контроля изоляции вводов

Для выявления повреждений внутренней изоляции вводов в начальной стадии применяются устройства контроля изоляции вводов. Принцип их действия основан на измерении суммы трехфазной системы токов, протекающих под воздействием рабочего напряжения через изоляцию трех вводов, включенных в разные фазы трансформатора. Повреждение изоляции высоковольтного ввода может спровоцировать возгорание в трансформаторе.


Таким образом, работа указанных защит непосредственно связана с обеспечением пожарной безопасности на трансформаторной подстанции. Необходимо отметить, что согласно РД 34.15.109-91 последовательное включение пусковых органов указанных защит, запускающих установку пожаротушения, не допускается.

`Пуск пожаротушения и отключение трансформатора

Помимо запуска противопожарной автоматики от технологических защит, возможна и обратная ситуация. Помещение, в котором размещается трансформатор, оснащается автоматической пожарной сигнализацией для защиты трансформаторов при возникновении пожара в помещении. В случае сработки АПС на объектах без постоянного обслуживающего персонала происходит не только пуск пожаротушения, но и аварийное отключение трансформатора. Для энергетических объектов с постоянным пребыванием персонала автоматический пуск установки пожаротушения должен дублироваться дистанционным включением (отключением) дежурным персоналом со щитов управления, а также по месту установки запорной арматуры и насосов. Отключение трансформатора от сети является обязательным условием пуска пожаротушения. В соответствии с РД 153-34.0-49.101-2003 "Инструкция по проектированию противопожарной защиты энергетических предприятий" пуск установки пожаротушения трансформатора (реактора) должен производиться через устройство контроля отключения его выключателей со всех сторон электропитания. Таким образом, обеспечивается интеграция системы телесигнализации о состоянии трансформатора и пожаротушения.

Подобная практика интеграции системы пожаротушения на подстанции и систем технологической защиты отражена не только в российских нормативных документах, но и в зарубежных стандартах и рекомендациях. Так, согласно Руководству по обеспечению пожарной безопасности трансформаторов, выпущенному рабочей группой А2.33 Международного совета по большим системам высокого напряжения CIGRE, предупреждением об обнаружении неисправности трансформатора и командой запуска активной системы обеспечения пожарной безопасности (например, системы газового или водяного пожаротушения) может служить сигнал, полученный от устройства сброса давления или от газового реле Бухгольца.

Нормативные противоречия

П. 3.2.56 ПУЭ сообщает, что на дифференциальную и газовую защиты трансформаторов, автотрансформаторов и шунтирующих реакторов не должны возлагаться функции датчиков пуска установки пожаротушения и пуск схемы пожаротушения указанных элементов должен осуществляться от специального устройства обнаружения пожара. Налицо противоречие в нормативных документах. Однако Главтехуправление Министерства энергетики и электрификации СССР решением от 27 сентября 1985 г. № 3–5/85 приостановило действие данного пункта ПУЭ и ввело описанную выше схему пуска автоматики пожаротушения трансформаторов. Полный текст решения приведен в РД 34.49.104 (РД 34.15.109-91) "Рекомендации по проектированию автоматических установок водяного пожаротушения масляных силовых трансформаторов".

Контроль и управление обстановкой на различных уровнях

Помимо интеграции пожарной автоматики в АСУ ТП, многие крупные электроэнергетические компании внедряют отдельные системы управления безопасностью. Примером может послужить внедрение комплексной автоматизированной системы управления безопасностью (КАСУБ) в ПАО "ФСК ЕЭС". Данная система используется с 2010 г. и предназначена для повышения уровня безопасности энергообъектов, в том числе в части обеспечения антитеррористической и общественной безопасности, в условиях чрезвычайных ситуаций техногенного и природного характера, снижения рисков нештатных ситуаций, в том числе вероятности их возникновения, а также для системной интеграции систем безопасности и средств автоматизации органов управления. КАСУБ объединяет множество модулей и непосредственно связана с диспетчерскими центрами АСУ ТП подстанций. Основная цель внедрения таких решений – это возможность контроля и управления обстановкой на объекте при аварийной ситуации со стороны различных уровней организации энергетической компании.

Усложнение пожарной автоматики на энергообъектах, ее интеграция с технологическими защитами, внедрение комплексных систем управления безопасностью – все это в конечном итоге предпринимается для обеспечения безопасности подстанций, снижения угрозы здоровью и жизни людей. И хотелось бы, чтобы дальнейшее развитие автоматизации в данной области ориентировалось именно на эту цель как на первостепенную.

Насчет Умных и сУмнительных предложений... Я же сказал, что это почти рекламная пауза. Почему не скрываю? Потому, что врать не привык. Мне не интересно "впарить". Я ввязался в обсуждение в попытке помочь. Впрочем, это лирика. А теперь по существу.
Пожарную опасность трансформаторов составляет огромное количество трансформаторного масла, а также провода, кабели, сгораемые изоляторы, по которым пламя может уйти в соседние помещения.
Как развивается пожар трансформатора? ВНУТРИ трансформатора происходит (например)межвитковое замыкание, что приводит к очень быстрому, практически мгновенному повышению температуры и вскипанию масла. При этом после повышения температуры охлаждающего (трансформаторного) масла происходит автоматическое отключение трансформатора(так рассказывали энергетики). Однако внутри трансформатора процесс горения УЖЕ идет, что приводит к вскипанию масла. На такой случай конструкцией трансформатора предусмотрен СЛИВ масла в подземные резервуары. ОДНАКО процесс вскипания (увеличения объема) масла идет настолько быстро, что частично масло выбрасывается через расширительный бачок. Это ЧАСТИЧНО может составлять до 2 - 3-х тонн (опять-же со слов энергетиков). Лично в моем случае (не буду лукавить - единственном за 20 лет в пож охране) масло горело на площади около 50 м кв.
Таким образом задача по тушению состоит из 2-х задач: 1 - тушение пролива масла для защиты рядом расположенных помещений, самого здания и т.п.; 2 - тушение остатков масла В САМОМ трансформаторе.
По 2-й задаче - некоторые (например французы из SERGI) предлагают в рубашку (внутрь трансформатора) подавать инертные газы. Подобная операция возможна только на стадии производства трансформатора. На РАБОТАЮЩЕМ трансформаторе это весьма сУмнительно (начинаю использовать Ваш слэнг).
По 1-й задаче огнетушащие порошки справляются на-раз (вам любой дипломированный пожарный скажет, что ЛВЖ-ГЖ можно тушить либо пеной, либо порошками).
И ещё... Вижу, что Вы, уважаемые, имеете весьма смутное представление о тушении трансформаторов. Впрочем, как и я. И это действительно сложная тема. Хотя-бы потому, что находится на стыке двух направлений: пожаротушение и энергетика. Подтверждением тому служат шараханья в самих документах РАО ЕС - здесь можно, а вот там нельзя (Вы сами писали со ссылками на РД). Учитывая закрытость энергетиков (попробуйте пройдите без пропуска на их объект) тема автоматического тушения плохо изучена, в пожарных учебниках пишут только про тактику тушения оперативными подразделениями.
Поэтому и пытаюсь поделиться и разобраться ВМЕСТЕ.
В общем-то, мне и сайт 0-1 только этим и интересен: позволяет пообщаться с коллегами не только на выставках.

Трансформаторные подстанции относятся к объектам повышенной пожароопасности, к тому же последствия возгорания здесь могут быть крайне серьезными. В то же время, некоторые в трансформаторных подстанциях неприменимы. Пожарная защита для подстанций должна учитывать особенности этих объектов.


Последствия возгорания на трансформаторных подстанциях могут быть катастрофическими. Это и угроза жизни людей, и перебои в энергоснабжении, и серьезные убытки для предприятия. Принятие соответствующих противопожарных мер позволит снизить риск возникновения пожароопасных ситуаций и смягчить последствия пожара.


Пожары на трансформаторных подстанциях могут возникнуть в результате: проведения сварочных работ, неполадок в работе масляных высоковольтных выключателей, трансформаторов тока и напряжения, силовых трансформаторов, электрических кабелей под напряжением, шинопроводов и др. Исходя из этого, определяются зоны и очаги возможного возгорания и осуществляется расстановка и подача огнетушащего вещества.

Выбор средства пожаротушения

В современных системах пожаротушения используются разнообразные средства борьбы с огнем – вода, пена, газ и специальные сухие порошковые смеси. Однако для тушения возгораний на объектах, где находится электрооборудование под напряжением, наиболее приемлемым способом является либо .


Разработку систем автоматического пожаротушения производят в соответствии с требованиями Свода правил СП 5.13130.2009 «Системы противопожарной защиты.


Установки и пожаротушения автоматические. Нормы и правила проектирования», который введен в действие в целях исполнения Федерального закона от 22.07.2008 г. № 123-ФЗ «Технический регламент о требованиях пожарной безопасности».


Cистемы пожаротушения в трансформаторных подстанциях состоят из модулей с огнетушащим веществом, системы трубопроводов с насадками-распылителями, а также автоматики, определяющей, где начался пожар, и запускающей систему автоматического пожаротушения. Насадки-распылители располагаются таким образом, чтобы равномерно распределять огнетушащее вещество по всей поверхности, обеспечивая действенную борьбу с огнем.

Проект системы пожаротушения

Проект системы пожаротушения в трансформаторных подстанциях требует совместной работы многих профессионалов. Как правило, проект состоит из теоретической и графической частей – первая определяет выбор оборудования и материалов для тушения пожара, содержит в себе расчеты, вторая представляет собой детальные чертежи будущей системы c расстановкой оборудования, схемами соединения приборов, прокладки кабелей и информационных линий. Не нужно забывать и об интеграции локальной установки пожаротушения в систему противопожарной защиты всего здания.


Грамотный и детальный проект системы пожаротушения на трансформаторных подстанциях делает процесс монтажа быстрее и проще, исключая любую возможность ошибки. Создание проекта, равно как и монтаж автоматического пожаротушения, следует поручать только квалифицированным специалистам с большим опытом и знанием всех норм и стандартов.


Специализацией является проектирование и установка систем автоматического пожаротушения на объектах разного типа и уровня сложности. Специалисты компании готовы разработать для вас и автоматического пожаротушения в помещениях электрохозяйства с напряжением до 10 кВ включительно, адаптировав ваши пожелания к требованиям закона.


Каждый проект индивидуален и единого универсального решения не существует, поэтому определить цену системы пожаротушения заочно затруднительно. Однако зная все условия, наши эксперты готовы провести для вас допроектную оценку стоимости всех работ.

Промышленное серийное производство трансформаторных подстанций налажено многими предприятиями. Проекты подстанций различного типа предусматривают не только их надежную функциональность в качестве преобразующего и распределительного узла, но и безопасную эксплуатацию.

Многие КТП устанавливаются в населенных пунктах, на предприятиях, вблизи транспортных магистралей. Пожарная безопасность трансформаторных подстанций - одно из главных требований при монтаже и эксплуатации.С этой целью разработаны определенные правила строительства и оборудования трансформаторных подстанций, обязательные для выполнения как строителями, так и энергетиками.

Эти правила собраны в специальных документах - «Руководстве по защите ТП от пожаров», «Требованиях пожарной безопасности» относительно КТП и других сборниках. В них проанализированы основные причины возгораний и указаны возможности минимизации последствий.

Основные источники возможных возгораний

Риск возгорания кабелей при коротком замыкании, воспламенение масляных высоковольтных выключателей, трансформаторов тока довольно велик и возможность возникновения пожара по вине электрооборудования полностью устранить нельзя. Но можно многократно уменьшить последствия этих возгораний.

    • Одна из наибольших опасностей возгорания угрожает кабельным линиям. Кабели и провода от трансформаторных станций к распределительным щитам должны прокладываться в огнестойких каналах раздельного типа и быть оборудованы негорючей изоляцией. Все линии электропередач внутри и снаружи здания должны оборудоваться автоматикой аварийного отключения при перегрузках или КЗ.
    • Линии, к которым подключены устройства пожарной безопасности, оборудуются огневой защитой или изоляцией с таким классом огнестойкости, чтобы при пожаре система могла сохранять работоспособность столько времени, сколько требуется по нормативам, чтобы эвакуировать весь персонал.
    • Трансформаторные подстанции типа КТПБ - одни из самых безопасных в плане пожарной безопасности. Несгораемые стены и пол позволяют локализовать пожар внутри здания без угрозы его распространения. Но внутри помещений не должны храниться горючие материалы, баллоны с газом, ветошь и другие опасные в пожарном отношении вещества.
    • Все работы внутри подстанции, сопряженные с появлением искр или высокой температурой - сварка, резка болгаркой, сверление производятся только при полном соблюдении соответствующих правил и наличии средств оперативного пожаротушения.
    • Распределительные щиты выполняются из негорючего материала и надежно изолируются от оборудования. Все электрораспределительное оборудование и трансформаторы должны соответствовать классу помещения по взрывоопасности и пожароопасности и регулярно проверяться согласно плану ТО.
    • Вся растительность, угрожающая распространением горения от подстанции, или способная привлечь огонь от сторонних источников к ТП должна удаляться по всему периметру участка, на котором расположен трансформатор. Кровли и перекрытия подстанций выполняются из несгораемых материалов. Все деревянные элементы обрабатываются антипиренами.

Я воспользовался услугами компании «Вариант Безопасности». Помимо подготовки проекта пожарной безопасности трансформаторной станции они занимаются установкой пожарно-охранной сигнализации в театрах, школах, дошкольных учреждениях, гостиницах, работают с другими предприятиями. Если интересно, в Москве их можно найти здесь.